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Introduction

In 2015, the American Statistical Association (ASA) published the Statistical Educa-

tion of Teachers (SET) report. The report was summoned to further unpack the rec-
ommendations of the Mathematical Education of Teachers II (MET II) report, which 
specified that mathematics teachers especially need preparation in statistics. The 
MET II report, published by the Conference Board of the Mathematical Sciences 
(CBMS), was written to specify knowledge needed for those who will be teaching 
the Common Core State Standards or equivalent state standards in their classrooms. 
The SET report, aimed at teacher educators, specifically articulates the statistical con-
tent that teachers should know to be well prepared to teach to current education-
al standards. It provides examples at different grade levels that build on themselves 
to show how the level of statistical sophistication should increase throughout the 
grades. Consistent with the MET II report, the recommendations of the SET report 
include the following coursework for teachers: 

 • Elementary-school teachers: six-week to a semester-long course in statistics
 • Middle-school teachers: two semester-long courses in statistics
 • High-school teachers: three semester-long courses in statistics

These recommendations are ambitious, particularly because current teacher- 
preparation programs sometimes contain little to no statistics content. However, 
while ambitious, the recommendations are aligned not only with the general recom-
mendations of the mathematics-education community of teacher educators presented 
in the MET II report, but also with society’s statistical-literacy needs (e.g., being able 
to understand data-driven news articles and being able to think critically about issues 
present in our society). 

In 2020, the Pre-K–12 Guidelines for Assessment and Instruction in Statistics Education II 

(GAISE II): A Framework for Statistics and Data Science Education report was copublished 
by the ASA and the National Council of Teachers of Mathematics (NCTM). GAISE II 
incorporates enhancements and new skills needed for making sense of data today while 
maintaining the spirit of the original Pre-K–12 GAISE report published in 2005. Now 
more than ever, it is essential that all students leave secondary school prepared to live 
and work in a data-driven world, and the GAISE II report outlines how to achieve this 
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goal. To reach the goal of a data-literate population, teachers must be prepared to deliver 
statistics and data-science content in the classroom. The importance of teacher prepara-
tion in statistics and data science has been further articulated in the NCTM document 
Catalyzing Change in High School Mathematics: Initiating Critical Conversations, wherein sta-
tistics is included as a major content area along with algebra and geometry. In addition, as 
data science becomes more prominent in state standards across the nation, teachers need 
preparation to meet these demands.

Importance of Data Today. As noted in GAISE II, in recent years, there has been an increased 
emphasis on data and data-driven decisionmaking in our society. Data, both traditional 
types and nontraditional types, are everywhere, and statistics is often called the science 
of data. The collection of data, the quantification of our lives, and the reliance on data for 
decisionmaking are prominent features in today’s data-driven society. For example, con-
sider the recent popularity of body-tracking devices that quantify our movements, diets, 
and other daily behaviors. Devices such as Fitbits, Apple Watches, and cellular phones 
allow each individual to collect data about themselves on a daily basis. Gould’s article 
“Statistics and the Modern Student” (2011) provides a wealth of examples of data being 
collected by various technologies throughout a typical day. For example, he mentions the 
Pandora app making music suggestions for his listening pleasure based on his prior song 
choices and his responses to preference questions asked by Pandora. Another example 
Gould provides is related to geomaps updating gas prices in the greater Los Angeles area 
so that an individual can make an informed decision on where to purchase gas.

These examples demonstrate that we can collect, analyze, and interpret data to answer 
statistical investigative questions and to drive decisions in our lives. Presumably we 
could then analyze and interpret the data to help us make life choices, such as how 
many steps we should take per day, which foods we should eat, or which music sugges-
tions we should follow. 

Because increasing importance is being placed on data literacy throughout society—for 
example, statistical information flooding the news—data increasingly influence our lives. 
This has dramatically been demonstrated since March 2020, when the world entered the 
COVID-19 pandemic. As engaged members of society, we must be educated on how to 
make sense of statistical information. The demand for people educated in statistics and 
data science has grown. For example, jobs related to statistics are expected to grow by 
about 27% between 2012 and 2022, according to the Bureau of Labor Statistics (2013). 
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The State of Statistics Education. As data become increasingly more accessible and the 
action of collecting data continues to be present in our daily lives, it is necessary to 
prepare a statistically proficient population. Because of this new emphasis, data and sta-
tistics have become a key component of K–12 mathematics curricula across the coun-
try. The current standards contain a substantial amount of statistics at the middle- and 
high-school levels. As states revise their math standards, additional statistics standards 
are being added, particularly at the elementary level. In addition, the number of stu-
dents taking Advanced Placement (AP) statistics in high school has drastically increased 
over the past several years—from 7,500 in 1997 to more than 222,000 in 2019, illus-
trating the student demand for statistics education (https://secure-media.collegeboard.
org/digitalServices/pdf/research/2019/Program-Summary-Report-2019.pdf). Given 
these increased demands, it is imperative that teachers be prepared accordingly.

While data in our daily lives have become increasingly more important, the idea of 
promoting statistics in schools is not new. In 1923, the Mathematical Association of 
America’s (MAA’s) report The Reorganization of Mathematics in Secondary Schools included 
two recommendations. First, statistics should be offered in middle-school mathematics; 
second, statistics should be included as a required course in high school. Today, almost 
100 years later, the Common Core State Standards in Mathematics (CCSSM) and other 
state standards include statistics as part of the mathematics curriculum in schools. 
Unfortunately, statistics still struggles to have a place in teacher-preparation programs 
and professional development. This book was written with the intention of addressing 
this issue. A goal of this book is to provide a resource to guide teacher preparation in 
statistics and data science. 

Teacher Preparation. Teachers need to understand the statistics they must teach accord-
ing to current state standards and be familiar with appropriate methods and technolo-
gies for teaching statistics and data science. Unfortunately, teachers have been given 
little opportunity to learn statistics in their training programs (MET II, 2012). Currently, 
there are resources available on the ASA website, at www.amstat.org/AMSTAT/
Education/K-12-Educators/ASA/Education/K-12-Educators.aspx?hkey=66767c1e-
fea8-43ea-8665-12bf718997f6, to use in teachers’ preparation; there are also online pro-
fessional-development courses developed by Dr. HollyLynne S. Lee at www.mooc-list.
com/instructor/hollylynne-s-lee. Other resources for teaching statistics and data science 
also exist; however, a comprehensive book, not focused on AP statistics, that covers sta-
tistics and data-science preparation for teachers is currently lacking. In fact, the MET II 
report has identified statistics as the one area in which teachers have the largest need in 

https://secure-media.collegeboard.org/digitalServices/pdf/research/2019/Program-Summary-Report-2019.pdf
https://secure-media.collegeboard.org/digitalServices/pdf/research/2019/Program-Summary-Report-2019.pdf
https://www.amstat.org/AMSTAT/Education/K-12-Educators/ASA/Education/K-12-Educators.aspx?hkey=66767c1e-fea8-43ea-8665-12bf718997f6
https://www.amstat.org/AMSTAT/Education/K-12-Educators/ASA/Education/K-12-Educators.aspx?hkey=66767c1e-fea8-43ea-8665-12bf718997f6
https://www.amstat.org/AMSTAT/Education/K-12-Educators/ASA/Education/K-12-Educators.aspx?hkey=66767c1e-fea8-43ea-8665-12bf718997f6
https://www.mooc-list.com/instructor/hollylynne-s-lee
https://www.mooc-list.com/instructor/hollylynne-s-lee
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both content and pedagogy (CBMS, 2011). Despite numerous approaches to teacher edu-
cation in general mathematics (e.g., Ball, 1991; Ball & Bass, 2000; Hill & Ball, 2004; Franke 
et al., 2009), there is a shortage of comprehensive resources for training teachers to teach 
statistics and data science.

Purpose of This Book. Access to resources that addresses current school-level stan-
dards and recommendations put forth in the SET report would empower teachers and 
teacher educators to teach statistics and data science in a way that is rich and relevant. 
This book aims to provide teachers with a foundation in statistics and data 

as outlined by SET and included in state standards. In the spirit of GAISE II, this 
book presents statistical ideas through investigations and engagement with the statis-
tical problem-solving process of formulating statistical investigative questions, collect-
ing/considering data, analyzing data, and interpreting results. For each investigation, 
worksheets prepared by teachers to be used in the classroom can be downloaded here 
https://bit.ly/Statistics-DataScience-for-Teachers. 

This book, Statistics and Data Science for Teachers, encompasses all grade bands of teacher 
preparation (elementary, middle, and high) up to the content of an AP statistics course. 
The authors envision that it could be used to guide entire courses and professional devel-
opment, or portions of courses and professional development that teachers may be taking. 
A main goal of the book is to provide teacher educators with a resource to use 

when preparing teachers of all grade levels to teach statistics and data science in 

their classrooms.  

The material presented in this book has been tested and used in numerous teach-
er-preparation settings, such as preservice teacher preparation, graduate courses in sta-
tistics specifically for in-service teachers, and professional developments for districts, in 
both face-to-face and online modalities. In its entirety, the material in this book takes 
approximately 50 hours to address in a face-to-face class. Each investigation provided 
takes approximately one hour to explore, and additional materials, such as extra practice 
problems, make up an additional 15 hours. The book can be presented in multiple ways. 
The investigations could be adapted for use in an online forum or a distance-learning 
opportunity. Additionally, the book is structured in a way that an individual teacher could 
read the book and self-instruct by following along with each investigation. When reading 
through the book, one will find that the materials build on one another. Thus someone 
who is self-directed can follow the progression of the topics and discussion to develop a 
foundation in statistics. The book presents material in a conversational manner, not a 
formal textbook style, thus making it easy and engaging to read. 

https://bit.ly/Statistics-DataScience-for-Teachers
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The goal of this book is to provide guidance in preparing educators in a way that helps 
teachers gain: 

 • an understanding of statistics and data-science content covered in grades K–12, 
 • an appreciation of and a familiarity with using technology such as apps and statis-

tical software, and 
 • an understanding of how to think about data. 

Structure of This Book. Throughout this book, teachers are viewed as active participants, 
working to deepen their understanding of modern-day statistics. The book presents 
content in the form of case studies and investigations. Case studies use news articles to 
motivate the statistics content. The investigations introduce content in the spirit of the 
Pre-K–12 GAISE guidelines, wherein each investigation is guided by a question, and the 
scope of the investigation is to answer the question through data. Throughout the book, 
we make reference to “Mathematical Practices through a Statistical Lens,” described in 
Chapter 3 of the SET report. These practices describe the habits of mind one might employ 
while problem-solving in the statistics content domain. As noted in the SET report, these 
practices differ in important ways from the mathematical practices. In statistics, the prac-
tices focus on sifting through uncertainty and variability in systematic ways.

The book is organized into three sections: 
 • “Statistics as a Problem-Solving Process”
 • “Toward Data Science”
 • “Probability Unpacked”

Within each of these sections, standard topics of descriptive statistics, associations and 
relationships, distributions, probability, and sampling distributions are all developed. In 
addition, the “Toward Data Science” section illustrates how the principles of data science 
can be delivered in K–12 throughout all of the grade bands. 

We are excited about sharing the insights that we have learned from our experiences as 
teachers and from collaborating with amazing teachers and students. It is our hope that 
you find these materials creative, realistic, and helpful for inspiring the development of 
sound statistical-reasoning skills.

Anna Bargagliotti & Christine Franklin





| 1

UNIT 1:

Statistics as a  
Problem-Solving  

Process





| 3

UNIT 1A:
The Statistical  
Problem-Solving Process

In 2020, the Pre-K–12 Guidelines for Assessment and Instruction in Statistics Education II 

(GAISE II): A Framework for Statistics and Data Science Education report articulated the 
statistical thinking process. The GAISE II framework described statistics as a pro-
cess (illustrated below) that includes four components: Formulate Statistical Inves-
tigative Questions, Collect/Consider the Data, Analyze the Data, and Interpret the 
Results (GAISE II, 13). 

Investigative questions provide a starting point for statistical investigations to be 
carried out. They can be thought of as research questions. Such questions necessi-
tate data to be collected in order for them to be answered. Such questions anticipate 
variability in data and aim to understand the variability. Data are collected in such 
a way that when analyzed, they will provide a pathway to answer the investigative 
questions; analyses are conducted to summarize the data in order to better under-
stand the variability present in the data and to answer the investigative question; 
and interpretations are drawn that provide an answer to the investigative question 
posed. Throughout this book, we will refer to the process of going through the four 
phases in Figure 1 as the statistical problem-solving process.  
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GAISE II explicitly discussed how questioning plays an important role throughout all com-
ponents of the process. In fact, in statistics, there are several different layers of questioning 
within the statistical problem-solving process (Arnold and Franklin, 2021). For example, 
there are questions that motivate the study investigation, statistical questions that moti-
vate the data collection, questions that produce data (e.g., survey questions), questions that 
prompt analyses of the data (e.g. What are typical values?), interrogative questions to under-
stand the data (e.g., What is the unit of observation?), and questions that focus on the inter-
pretation of results. For each of the components in Figure 1, questioning plays an important 
role. We will discuss the role of questions in statistics in more depth in the following unit. 
For now, the important thing to note is that the collection, analysis, and interpretation of 
data are all motivated by the necessity to answer the investigative question posed.  

Investigation 1A.1: Third Grade Sports

Goals for this investigation: Illustrate the statistical investigative process—formulate statistical 

investigative questions, collect/consider the data, analyze the data, and interpret the results.

At a local elementary school, school administrators are interested in purchasing new equip-
ment for the third graders’ recess time. They do not know what to buy, so they ask: What 
type of equipment should be purchased for the playground? This question motivates the 
administrators to conduct an investigation. To decide what type of equipment they should 
purchase, they realize they need to first understand the students’ preferences on what they 
would use. The administrators pose the following investigative question: 

What sports do third grade students at our school prefer?
1

This question is an investigative question because it is unlikely that all the third grade stu-
dents will have the same preference, and thus data on preferences will vary. To answer this 
investigative question, they decide to survey the entire third grade class by asking them this 
survey question, which will produce data to analyze: 

What is your favorite sport to play at school?

 Basketball                    Soccer

 Football                       Tag

 Handball

1  “What sports do third grade students at our school prefer?” is the statistical question that motivates the data collec-
tion. We will refer to questions used to motivate data collection as “investigative questions” throughout the book. 
Such questions initiate a statistical investigation, as described in Figure 1.
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Eighty students were enrolled in third grade, and every student answered the survey ques-
tion. The data collected can be found in ThirdGradeSports.csv. Before proceeding to ana-
lyzing these data, we can identify features of the data by introducing key statistical terms. 

The observational units are the entities on which data are recorded. They are the 
objects or individuals participating in a study. One can think of the observational units 
as what we measure. For this investigation, because we are taking a measurement of 
the students, the students are the observational units. The students’ preferences are 
then recorded as data. In our investigation, we have 80 observations; each represents a 
student’s response to the survey question. 

A population is the entire collection of observational units that are of interest for a 
statistical investigation. For this investigation, the 80 students represent the population 
of third graders at the school. It is important to note that the investigative question 
defines the population of interest. In our case, the question “What sports do third grade 
students at our school prefer? refers to the fact that we are interested in the entire third 
grade class in our school—all 80 students. Because our survey was administered to the 
entire population of third graders, we conducted a census. A census gathers informa-
tion from every member of the population of interest.

Our survey asked students to choose which sport they preferred to play at school. The 
variable we are interested in is the students’ sport preferences. A variable is a char-
acteristic or an attribute that describes the observational unit. A variable can fluctuate 
from one observational unit to the next. Variables can be either quantitative or cate-
gorical. A variable is quantitative if it represents a measurable quantity. The measur-
able quantity is measured numerically. For example, measurement of a person’s height, 
student test scores, or a country’s population size would all be considered quantitative 
variables. However, not all variables that have numbers as values are quantitative. 
Consider, for example, a person’s zip code. Although a zip code is numeric, it is not a 
measurable quantity. A zip code simply identifies a person with a specific location of 
residence. This identification places a person in their respective zip code category. A 
variable is categorical when it assigns the observational units to a particular group. 
Therefore, a zip code is categorical. Other examples of categorical variables include a 
student’s gender, a student’s race, or the breed of a dog. In this investigation, the stu-
dents’ sport-preference variable is categorical. This is because each student has assigned 
themselves to a favorite sport (category). To prompt the analysis of these data, we can 
ask questions such as (a) how many students preferred each sport?, (b) what percentage 
of students preferred each sport?, and (c) what is the modal sport? 
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Categorical data can be summarized in a fre-

quency table. A frequency table is a table that 
displays the categories of the variable and the 
number of observational units that identified 
with that category. It is important to under-
stand that the actual data value is the category 
in which a student is classified. The frequen-
cies are not the data. Instead they are summary 
numbers of the category data. The frequency 
table can help answer questions about the 
number of students who preferred each sport 
and the modal sport category. 

We see that basketball is the preferred sport for 25 of the 80 third graders, while football 
has 10 students, handball has 16, soccer has 14, and tag has 15 students. While hand-
ball, tag, and soccer are popular among the third grade students, basketball is the modal 
sport—that is, it is the sport most frequently selected among the third graders. Basketball 
is favored by approximately 31 percent of the students, while the second-most-favored 
sport, handball, has only 20 percent of the votes. 

By looking at these analyses, we can then ask the interpretive question: What type of 
equipment should the administrators prioritize? We can see that basketball is the pre-
ferred sport of the third grade class. Thus, it would be reasonable that one conclusion 
the school administrators could make would be to prioritize the purchase of new bas-
ketballs and basketball hoops. If any money is leftover, then handball supplies should be 
purchased next. 

The previous investigation demonstrates how a statistical investigation is guided by 
an investigative question. The investigative question “What sports do third grade stu-
dents at our school prefer?” was answered through the collection of data from a class 
census, with a categorical variable identifying the favorite sport of each student. These 
data were collected using a survey question. The analysis included the summary of 
the data into a frequency table, followed by asking analysis questions such as “What is 
the modal category?” The interpretation of the frequency table enabled the adminis-
tration to answer the investigative question directly. The investigation also highlights 
some important terminology, namely, populations, census, types of data, observational 

units, and variables. 

What is your favorite sport to 
play at school?

Frequency

Basketball 25

Football 10

Handball 16

Soccer 14

Tag 15

Total 80
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INVESTIGATION SUMMARY: 
The main concepts developed in the third grade sports investigation are: 

1. The statistical investigative process includes formulating investigative ques-
tions, collecting or considering data, analyzing data, and interpreting data. 

2. A population is the entire set of items, events, people, objects, etc. that are of 
interest for a posed investigative question. 

3. An observational unit is the unit that the data describe. It is the object, person, 
group, item, etc. that we measure.

4. A variable is a characteristic or an attribute that describes the observational unit. 
The value of a variable can vary from one observational unit to the next. A vari-
able can be quantitative or categorical. It is quantitative if it represents a mea-
surable quantity that is measured numerically. It is categorical when it assigns 
the observational unit to a particular group.

Follow-Up Questions
1. Identify and describe the populations of interest for the following investigative 

questions of interest:
a. What is the typical mathematics test score of students in the Mira Beach School 

District? 
b. What is the typical mathematics test score of third grade students in the United 

States?
c. Do seventh grade students in California who tend to study late at night tend to 

have bad grades? 
d. Are 10-year-old kids in the United States more likely than 10-year-olds in Italy 

to have participated in organized sports?
e. Can you predict how far a kangaroo in Australia can jump based on the kanga-

roo’s height, age, and weight?
2. Identify the observational units in the following questions: 

a. Do students in the fifth grade class at Placid Elementary School prefer to read, 
explore mathematics, or neither during their free playtime each day?

b. Does a school’s impact on the environment differ between high-poverty areas 
and low-poverty areas in the Los Angeles Unified School District? 

c. Do teachers with more content knowledge in the Memphis City School District 
tend to give more open-ended tasks in the classroom? 

d. Within the different regions of the United States, what types of professional 
development are offered to teachers to support their pedagogy?
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3. Determine what variable would be measured from the following survey ques-
tions, and determine whether the variable would be quantitative or categorical:
a. What is your favorite professional men’s basketball team?
b. How many times have you traveled outside the country?
c. In what month were you born?
d. What is your height to the nearest inch?
e. What is your telephone area code? 

Case Studies: Seeing the Statistical Problem-Solving  
Process in News Articles
Every day, we are consumers of data. From commercials comparing one cellu-
lar-phone service with another, to National Public Radio segments discussing recent-
ly conducted studies, to news about polls gathering information on public opinion, 
we are presented with data in all facets of our lives. As users of data, it is important 
for us to be informed on how to interpret statistical ideas. We need to stay current 
and think critically about the world around us. To evaluate the conclusions present-
ed in news outlets, we must be able to understand the studies that are referenced in 
these outlets. In particular, when we read about a study in an article, it is important 
to be able to recognize the investigative process that was carried out by the research-
ers in order to think critically about the results. We next present two news articles as 
case studies and attempt to detect the investigative process being discussed in articles 
reporting on studies.

Case Study 1: Mathematics and Exercise

Goals of this case study: Provide examples of statistics encountered in everyday life, connect the 

aspects of a statistical study to the statistical investigative process, and explain the difference 

between observational and experimental studies. 

The article “Math-letes rule! Fit, Healthy Kids Do Better in School, Especially Math” was 
published in August 2015 on the CNN website. The article can be found here: 
www.cnn.com/2015/08/31/health/fit-kids-better-math/index.html.

The article describes a study that investigated the connections between kids’ fitness levels 
and their performance in mathematics and English.

https://www.cnn.com/2015/08/31/health/fit-kids-better-math/index.html
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Read the published article and outline the statistical investigative process by:
a. identifying the investigative question,
b. describing how the data were collected,
c. describing how the data were analyzed, and
d. characterizing what interpretations were made from the data.

The article “Math-letes rule! Fit, Healthy Kids Do Better in School, Especially Math” dis-
cusses an observational study in which 9- and 10-year-olds were tested in mathemat-
ics, reading, and physical activity. This study is called an observational study because it 
is a study where researchers observe the observational units and measure them in some 
way (on some variables) without attempting to influence the outcome (as compared with 
an experimental study). The overall scope of the research was to examine the connection 
between the mind and the body. The investigative question the researchers set out to 
answer could be articulated as follows: Is there an association between mathematics test 
scores of 9- and 10-year-old children and the physical activity of a child? The physical 
activity was measured as the amount of time the child could run on a treadmill. 

The investigative question indicates an interest in understanding whether there is an 
association between test scores and physical activity. The news article alludes to three 
different variables collected for each student. Because the students are the ones being 
measured, they serve as the observational unit of analysis in the study. The variables mea-
sured are: (1) the mathematics test score, (2) the reading test score, (3) the amount of time 
students could run on a treadmill while the treadmill was being increased by 3% grade 
increments every two minutes, and (4) the amount of gray matter in the students’ brains, 
as shown in an MRI. Students stopped running when they were considered exhausted 
according to their oxygen uptake and respiratory exchange ratio, measured every 20 sec-
onds. All four of the variables discussed are quantitative variables.

When thinking about these data, it may be helpful to picture a spreadsheet in which 
each row represents a student. To organize the data, there could be four columns in the 
spreadsheet representing the mathematics test score, the reading test score, and the time 
the child was able to run. The spreadsheet could look like the following table:

Observational Unit Math Test Score  
(out of 100)

Reading Test Score  
(out of 100)

Run Time  
(min)

Amount of Gray 
Matter in the Brain

Student A 71 50 9 volume value

Student B 92 30 7 volume value

Student C 56 70 12 volume value
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Forty-eight students were included in the study. Further internet investigation led us to 
the online journal article (https://journals.plos.org/plosone/article?id=10.1371/journal.
pone.0134115), which describes more details of the study, such as where the study took 
place, how students were recruited to participate, and the researchers’ screening pro-
cess in selecting the 48 students. The students participating in the study were a sample 
of volunteers from the larger population of interest in the study, which was all 9- and 
10-year-olds. A sample is a subgroup of a population of interest or a selected group from 
a population. A population is the set of all people or objects of interest in a study.

From the news article, we can distinguish each phase of the statistical investigative pro-
cess in the following way: 

(a) The study investigates the question, what is the association between math-
ematics test scores and the physical activity of a 9- or 10-year-old child? 

(b) The data were collected through a sample of 48 9- and 10-year-old chil-
dren who were tested on endurance on a treadmill, a mathematics test, 
and a reading test. In addition, the kids were given an MRI to measure the 
tissue in their brains.

(c) The data were analyzed by examining links between fitness and mathe-
matics achievement. The specific statistical analyses conducted were docu-
mented in the full study, accessed by clicking through the links provided in 
the news article. The analyses included descriptive analyses, independent 
t-tests, and a multivariate analysis of variance. 

(d) The analyses led to the interpretation that higher levels of fitness were 
associated with higher mathematics achievement. In addition, higher 
levels of fitness were associated with less gray matter in the front of the 
brains on the MRI scans. This gray matter is the area of the brain that is 
attributed to working memory, cognitive flexibility, and the ability to tune 
out distractions, all which are important skills in mathematics.

CASE STUDY SUMMARY: 
The main concept developed in the mathematics and exercise study are: 

It is helpful to dissect the investigative process of a case study in order to be 
informed how data are being reported. Through a careful reading of a news article 
and reference to the original study on which the news outlet reports, the statistical 
investigative process can be identified. 
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Case Study 2: Grocery Shopping and Healthy Eating

Goals of this case study: Provide examples of statistics encountered in everyday life,  

connect the aspects of a statistical study to the statistical investigative process, and explain  

the difference between observational and experimental studies. 

The news podcast “How Partitioned Grocery Carts Can Help Shoppers Buy Healthier 
Foods” was published in May 2015 and discusses the study examined in the arti-
cle “Partitioned Shopping Carts: Assortment Allocation Cues That Increase Fruit and 
Vegetable Purchases.” The article can be found here: https://www.npr.org/2015/ 
05/26/409671975/how-partitioned-grocery-carts-can-help-shoppers-buy 
-healthier-foods; a related article is here: www.npr.org/2015/09/10/439104239/can 
-grocery-carts-steer-consumers-to-healthier-purchases.

Read the published transcript from the podcast and outline the statistical investigative 
process by:

a. identifying the investigative question,
b. describing how the data were collected,
c. describing how the data were analyzed, and
d. characterizing what interpretations were made from the data.

The podcast transcript indicates that customers whose carts had large sections labeled for 
fruits and vegetables tended to purchase those healthier foods. As you reflect on the arti-
cle, ask yourself whether you trust the findings. Why or why not?

The observational units were the individual people shopping at the store. In looking at the 
original published study, we find that 171 shoppers participated in the study, 75 shoppers 
used the partitioned carts, and 96 shoppers used normal carts. This was an experiment, 
and shoppers were randomly assigned the different types of carts. The two variables mea-
sured were the type of cart shoppers received (categorical) and the amount of fruits and 
vegetables purchased (quantitative). The amount of fruits and vegetables purchased was 
measured by the study as the dollar amount spent on fruits and vegetables. The popula-
tion of interest was all individuals who shop for groceries. We can recognize the statistical 
investigative process in the following way: 

(a) The study poses the following investigative question: Do partitioned carts 
encourage people to spend more money on fruits and vegetables com-
pared with nonpartitioned carts? 

https://www.npr.org/2015/05/26/409671975/how-partitioned-grocery-carts-can-help-shoppers-buy-healthier-foods
https://www.npr.org/2015/05/26/409671975/how-partitioned-grocery-carts-can-help-shoppers-buy-healthier-foods
https://www.npr.org/2015/05/26/409671975/how-partitioned-grocery-carts-can-help-shoppers-buy-healthier-foods
https://www.npr.org/2015/09/10/439104239/can-grocery-carts-steer-consumers-to-healthier-purchases
https://www.npr.org/2015/09/10/439104239/can-grocery-carts-steer-consumers-to-healthier-purchases
https://www.npr.org/2015/09/10/439104239/can-grocery-carts-steer-consumers-to-healthier-purchases
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(b) The data were collected in a grocery store. A total of 171 people participated 
in the study and were randomly given a type of shopping cart. The obser-
vational unit was each individual shopping for groceries. The study noted 
the type of cart they used and the dollar amount they spent on fruits and 
vegetables. These were categorical and quantitative variables, respectively. 

(c) The data were analyzed by examining whether people with the partitioned 
carts spent more on fruits and vegetables than those with regular carts. To 
examine the impact of the type of cart, a regression analysis was performed.

(d) The study interpreted the results by noting that people with the parti-
tioned carts were more likely than those with normal carts to spend more 
money on fruits and vegetables. The interpretation was that the type of 
cart used does in fact affect a person’s shopping patterns. 

CASE STUDY SUMMARY: 
The main concept developed in the grocery shopping and healthy exer-

cise study are: 

It is helpful to dissect the investigative process of a case study in order to be an 
informed consumer of data. Through a careful reading of a news article and refer-
ence to the original study on which the news outlet reports, the statistical investi-
gative process can be identified. 

These case studies provide examples of how we are confronted with statistics in our daily 
lives. As consumers of data, it is important for us to know how to interpret informational 
articles and statistics in the news. By identifying the statistical investigative process, we 
are able to connect why we study statistics to real world examples, making our content 
knowledge applicable and meaningful. 

As described in the introduction of this book, a primary purpose of the book is to pro-
vide a guide to prepare teachers as envisioned in the Statistical Education of Teachers (SET) 

report. The material covered in this unit directly aligns with specific SET guidelines, as 
well as current state standards. Alignment matrices are provided that illustrate which 
standards and guidelines each of the investigations and case studies in the unit cover. In 
general, SET adapts the GAISE model for the statistical thinking process. This unit intro-
duces this process, which will be carried out throughout the book. Overall, statistics con-
tent should be introduced through investigations that follow the statistical process.
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Follow-Up Questions
1. Read the four news articles linked in the table and outline the statistical investi-

gative process by:
a. identifying the investigative question,
b. describing how the data were collected,
c. describing how the data were analyzed,
d. characterizing what interpretations were made from the data.

2. For each article, reflect on what additional information might be helpful for the 
article to include for the reader to get a better understanding of the study.

3. Is there anything you would do differently if you were conducting the study?

Case Study Name Source

Migraines www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm388765.htm

Busyness www.huffingtonpost.com/entry/being-busy-is-actually-better-for-your-brain-study-finds_
us_573c7f69e4b0ef86171ccab2

Lottery http://news.health.com/2016/01/27/people-gamble-more-when-they-think-things-are-
going-their-way/

Voice Changes www.npr.org/sections/health-shots/2015/01/05/371964053/how-a-position-of-power-
can-change-your-voice

Find a news article of interest to you and answer questions 1–3. Studies can be found via a 
Google search. Additionally, many can be found at the following website:  www.npr.org/
people/137765146/shankar-vedantam.
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UNIT 1B:
The Role of Questioning  
in Statistics

As discussed in the previous unit, statistics is an investigative process guided by four 
components: Formulate Statistical Investigative Questions, Collect/Consider the 
Data, Analyze the Data, and Interpret the Results. While the process explicitly men-
tions questions in the Formulate Statistical Investigative Questions component, in fact, 
questioning plays an important role in all of the components. Namely there are ques-
tions that motivate a study, questions that motivate the need to collect data (investiga-
tive questions), questions that produce data, questions that prompt analyses of the data, 
questions that are focused on the interpretation of results, and interrogative questions 
that are asked as checks and balances throughout the whole process. In essence, ques-
tioning can be used throughout the components to guide the investigation and offer 
insights into each step of the process. The purpose of this unit is to illustrate different 
types of questions and show how they can help create and guide rich investigations. 

Investigation 1B.1: Developing Investigative Questions

Goal of this investigation: Illustrate how questioning can guide an investigation through each 

of the four components—formulate questions, collect data, analyze data, and interpret results.

As part of Ms. Johnson’s role as an administrator at a large middle school of 880 
students, she is tasked with the job of deciding where to allocate school money and 
effort. At the beginning of the school year, the superintendent of her district pro-
vides her with a list of tasks that she will be responsible for throughout the year. She 
is expected to ensure that she makes a data-driven decision for every task. 

Ms. Johnson’s Task List: 

1. Decide on the type of healthy and desirable food offerings for the cafeteria. 
2. Help teachers determine whether they are meeting their teaching goals set 

in their professional development.
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3. Decide what color to paint the school next year.
4. Determine what teachers need in order to feel they are being given adequate 

support to deliver the current mathematics standards. 
5. Identify which subgroups of students might be struggling or succeeding 

within a class.
6. Determine whether having recess before math helps or hinders student focus.

For each task, (1) construct an initial investigative question and (2) create a data collec-
tion plan. Once that is complete, briefly describe the type of analyses one would conduct 
that would allow one to interpret the results and answer the investigative question.

Constructing an initial investigative question can be quite challenging, but writing statisti-
cal questions is a necessary skill for teachers to acquire in the interest of mastering the inves-
tigative process. For teachers to effectively guide a statistical investigation in a classroom, 
they need to be able to write and pose investigative questions. Writing a statistical investi-
gative question first entails understanding the scenario to be researched and understanding 
the overall question motivating the study. For example, task 1: What types of food can the 
cafeteria provide that are both healthy and desirable choices? Answering such a question 
requires a decision about food offerings; therefore, it would be important to discover the 
food preferences of the students who would be purchasing the food. Understanding the 
underlying motivating question means focusing on the point of interest. Once the point 
of interest is identified, one can phrase a more specific investigative question geared at 
uncovering the issue. The question must be posed in a manner that requires data to be col-
lected. The investigative question posed must anticipate variability in the data. For exam-
ple, because the food preferences of middle-school students will be different depending on 
the student, possible investigative questions could be “What are the healthy food prefer-
ences of students?” or “What healthy foods do students typically prefer to eat?” Both ques-
tions require preference data from students to be collected. Although both questions ask 
about students’ overall preferences , answering the second question requires considering 
how preferences will vary from student to student and trying to understand what a “typical” 
preference would be. Additionally, the task focuses on healthy food offerings in the school 
cafeteria. Thus, the following phrasing of an investigative question would be favored:

What healthy foods do our middle-school students prefer to eat at school?

Arnold (2013) developed criteria that can be used to critique statistical investigative 
questions that are posed. Using the investigative question, we can work through the cri-
teria to see if the question is a good one.
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1. Is the variable of interest clear and clearly defined? Yes, the variable of 
interest is healthy foods students prefer to eat.

2. Is the group or population that we are investigating clear? Yes, the ques-
tion is about the students in the middle school where Ms. Johnson works: “our 
middle-school students.”

3. Is the intent of the question clear? Yes, the investigative question is a sum-
mary-type question; we will summarize and describe the data collected to 
answer the investigative question.

4. Can we answer the question with the data we can collect? Yes, we can ask 
students about food preferences.

5. Is the question about the whole group? Yes, our question considers all of the 
responses from all students; it is not just asking about one category, for example.

6. Is the question interesting and/or purposeful? Yes, Ms. Johnson has to 
answer the question as part of her tasks for the year.

Ms. Johnson is interested in getting an idea of students’ opinions about what they prefer 
to eat, so she decides to construct a survey. It should be noted that survey questions 
are not investigative questions. Survey questions are developed and posed for the pur-
pose of data collection, while investigative questions set the stage for the entire process. 
Once an investigative question is posed, then appropriate data collection plans must be 
developed. A survey question is a question that produces data. In this sense, a survey 
question is a type of question that lives in the Collect/Consider the Data component 
of the investigative process. There are many ways to construct an appropriate survey 
question to help answer this investigative question. Here are two possible options. 

Survey Option 1: To focus the survey, Ms. Johnson decides to provide a list of all healthy 
food options and ask students to rate each food item with their likability score for eating 
the item at school. 

Rate each item on a scale of 1–3, 

where a rating of 1 means you do not 

like to eat this item at school, 2 means 

you sometimes like to eat this item at 

school, and 3 means you really like to 

eat this item at school.

The variables then consist of the 
students’ scores for each of the food 
items. The variables are ordinal  

Food Item Circle a Rating

Apple 1             2             3

Smoothie 1             2             3

Milk 1             2             3

Salad 1             2             3

Carrots 1             2             3

Yogurt 1             2             3

Sandwiches 1             2             3
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(have order). It might seem appropriate to state that the scores are categorical because 
they represent dislike, like, or really like, but the numbers represent an ordered scale of 
likability. In this sense, the numeric value of the food rating represents the degree of lik-
ability, which is ordinal; therefore, we are going to consider it quantitative. To treat it 
as quantitative, we are assuming that the difference between the numbers on the scale is 
consistent, which seems plausible in this case. Therefore, the data spreadsheet for a few 
example students will look like the following: 

Student’s 
Name

Apple  
Rating

Smoothie 
Rating

Milk  
Rating

Salad  
Rating

Carrots 
Rating

Yogurt 
Rating

Sandwiches 
Rating

John 2 3 3 3 2 1 3

Sara 1 3 3 3 2 1 2

Shayne 1 3 2 2 2 1 3

Kyle 3 3 3 2 2 2 3

Once the data are collected, the analysis seeks to provide understanding of the variability 
present in the data, while also trying to answer the investigative question. The following 
questions can be posed to help guide the analyses: 

1. How do the food item scores compare with one another?
2. What is the mean score for each of the food items?
3. What is the food item that has the least/most variability in scoring? 

These analysis questions offer guidance in the data analysis stage for the statistical inves-
tigative process. By quantifying and describing features of the variables, Ms. Johnson can 
then answer the initially posed statistical investigative question.

Survey Option 2: To focus the survey, Ms. Johnson decides to have students select their 
favorite food to eat at school from a list of foods. 

Select the food item that you most prefer to eat in 
the cafeteria: 

Food Item

Apple

Smoothie

Milk

Salad

Carrots

Yogurt

Sandwiches
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In this survey, the variable is 
the students’ favorite food, 
which is a categorical variable. 
Therefore, the data spreadsheet 
for a few example students 
might look like:

 Using these data, Ms. Johnson can consider how the food items compare with one 
another by answering the following guiding analysis questions: 

1. What foods do middle-school students prefer to eat at school?
2. What is the most/least preferred food to eat at school? 
3. Were the foods generally favorable or not favorable? 

These three guiding questions for the data analysis stage will help answer the investiga-
tive question by describing features of the variables. 

We now shift our interest to the next task on Ms. Johnson’s list, task 2: Help teachers deter-
mine whether they are meeting their teaching goals set in their professional development.

The school district has been implementing a professional development program to help 
teachers improve their mathematics teaching. As part of the program, each teacher 
has to set a goal for their teaching. The goal must be based on some type of change 
in pedagogy that the teacher is trying to implement in their class. For example, one 
of the teachers, named Maria, decides that getting students to ask questions as they 
are solving mathematics problems is a practice that should be fostered. Maria believes 
that questioning can help students foster mathematical habits of mind (e.g., persever-
ance, critiquing, reasoning, modeling), which may lead to higher achievement. In her 
teaching, Maria’s strengths lie in modeling questioning, and in encouraging students 
to ask themselves questions when they solve problems. Now, her goal is to investigate 
whether students’ questioning does in fact help increase students’ achievement. Her 
motivating research question is: Is there an association between student questioning 
while solving mathematics problems and their achievement in mathematics? 

She poses the following statistical investigative question to motivate her data collection: 

How do test scores on a mathematics test compare between students who ask 

questions and students who do not ask questions?

Student’s Name Favorite Food

John Smoothie

Sara Apple

Shayne Milk

Kyle Smoothie
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Maria decides that she will study her entire Math 1 class. Her unit of observation will be 
the student. Maria is interested in examining the link between student achievement on a 
mathematics test, a quantitative variable, and whether or not they asked themselves ques-
tions while taking the test, a categorical variable. To help her collect the data, she poses 
two data collection questions: 

 • Does a student ask questions?
 • What is a student’s score on the math test?

She decides to collect the data by giving a test and asking students to note whether or 
not they are asking questions as they take the assessment. To measure whether or not 
students are asking questions, she creates an assessment that provides a section titled 
“Question Space” next to each problem. This section provides space for students to jot 
down their questions as they go through each mathematics problem. As Maria looks 
over the students’ tests, she records whether or not the students utilized the question 
space in the way she has been modeling. The data spreadsheet will then be as follows:

Student’s Name Test Score Questioning (yes/no)

John 89 no

Sara 78 yes

Shayne 82 yes

Kyle 70 no 

Using these data, Maria can then examine if questioning helped improve test scores. 
Some guiding questions for the analysis phase could be: 

1. What is the mean student score on this test for students who ask questions and 
for those who do not? What is the difference in the mean scores?

2. How much variability is present in test scores for students who ask questions and 
for those who do not? (i.e., do students who ask questions generally score simi-
larly or differently?)

3. How do test scores of students who use questioning compare with those who do 
not use questioning? Can a graphical display be created that shows the test scores 
and how often each score was given for the students who use questions and those 
who do not? Do the graphs show that these two distributions are different? In 
what way?

After considering the guiding analysis questions, Maria could interpret if questioning 
led to an increase in test scores. Her interpretation could be guided by the following 
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questions: Is the difference between the two distributions meaningful? Is the difference 
large enough to matter? 

The analysis and the interpretation of results parts of this investigation will be carried 
out fully in subsequent units. 

INVESTIGATION SUMMARY: 
The main concepts developed in the developing investigative questions 

investigation are: 

1. A statistical investigative question is a question that requires one to collect data. 
Investigative questions guide investigations.

2. Good statistical investigative questions specify answers to the following 
questions: 

a. Is the variable of interest clear and clearly defined?
b. Is the group or population that we are investigating clear?
c. Is the intent of the question clear?
d. Can we answer the question with the data we can collect?
e. Is the question about the whole group?
f. Is the question interesting and/or purposeful?

3. Questioning is used throughout the statistical problem-solving process in order 
to guide data collection, analysis, and interpretation, and to interrogate all stages 
of the investigative process.

Follow-Up Questions

The possible statistical investigative questions and data collection plans for tasks 1 and 
2 have been completed. Now, consider task 3: Decide what color to paint the school 
next year. 

1.  Two school administrators propose the following different investigative 
questions and approaches to answering their investigative questions. Which 
approach will provide the best guidance to Ms. Johnson in determining the 
paint color of the school? Answers should be argued based on the data collect-
ed and the possible implications of their analyses. Discuss the pros and cons in 
each approach. If neither approach is satisfactory, design your own approach 
and discuss why it is better.  
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a. Mr. Washington’s approach: Mr. Washington believes that to feel 
ownership of and connection to a school, students must have a say in how 
the school looks. For the school’s upcoming paint job, Mr. Washington 
believes that student input should be solicited to help make the decision. He 
poses the following investigative question:

What is the favorite building color of people in the school?

To answer this question, Mr. Washington proposes to survey all students at the 
school and ask them the  following survey question: 

What is your favorite building color? 

The data will then be analyzed to see which color prevails among the students. 
Mr. Washington then proposes to choose the color based on the most com-
monly chosen answer by the students.

b. Ms. Lopez’s approach: Like Mr. Washington, Ms. Lopez also wants to 
solicit opinions from the students at the school. Ms. Lopez poses the fol-
lowing investigative question: 

What color do students typically prefer school buildings to be painted?

To answer this question, Ms. Lopez proposes to survey all the students at the 
school and ask them the following survey question: Select the color you would 

most like to see the buildings at the school be repainted: gray, cream, terra-cotta, blue, 

or green. The data will then be analyzed to see which color got the most votes 
among the students. Ms. Lopez then proposes to choose the color based on the 
most commonly chosen answers by the students. 

Consider task 4: Determine what teachers need in order to feel they are being given ade-
quate support to deliver the current mathematics standards. 

2. Create two different initial investigative questions and create a data collection 
plan for each. Compare and contrast the approaches for best determining the 
course of action for the task.

Consider task 5: Understand which subgroups of students might be struggling or suc-
ceeding in a class. As a first step, clearly define the subgroups of students you are inter-
ested in comparing.
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3. Create two different initial investigative questions and create a data collection 
plan for each. Compare and contrast the approaches for best determining the 
course of action for the task.

4. Construct your own initial investigative question to be used in an elementa-
ry-school classroom. (Note that the investigative question does not need to focus 
on the students. It could, for example, focus on ladybugs, sports teams, etc. What 
is important is that the question is appropriate for elementary-school students 
in the sense that the data collection plan and the analysis plan will be doable for 
elementary students). Create a data collection plan that could be used with a 
classroom of elementary students to answer your question. Then, state examples 
of analysis questions you could use to guide the analysis. How could the students 
use their analysis to answer the investigative question? Repeat this exercise for a 
middle-school classroom and a high-school classroom.

References for This Unit
Arnold, P. 2013. Statistical investigative questions—An enquiry into posing and answering 

investigative questions from existing data (Doctoral thesis). https://researchspace.
auckland.ac.nz/handle/2292/21305. 

Arnold, P., and C. Franklin. (2021). What makes a good statistical question? Journal of 

Statistics and Data Science Education, Vol. 29, 1.

https://researchspace.auckland.ac.nz/handle/2292/21305
https://researchspace.auckland.ac.nz/handle/2292/21305
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UNIT 1C:
Introduction to  
Distributions

In the previous units, we introduced the statistical problem-solving process and dis-
cussed the role of questioning in this process. In this unit, we will focus on analyz-
ing data through visualization. Once our investigative question is posed and relevant 
data are collected, it is time to analyze the data. An important step in data analysis is 
creating appropriate graphical displays of the data that aid in visualizing and iden-
tifying patterns in the variability present in the data. For each variable in a data set, 
we consider the possible values the variable could equal and how often each of those 
values occurs. 

The distribution of a variable describes the possible values the variable could assume 
and how often each of those values occurs. Oftentimes in advanced statistics, a distri-
bution is also specified by an equation. The distribution of a variable can show which 
values of the variable are common and which are rare. This information can be help-
ful in understanding tendencies and extracting overall patterns from variables, such as 
typical values of the variable or how much the values of the variable vary. 

The concept of a distribution and visualizing a distribution are difficult for students. 
Much research has shown that students tend to focus on only small aspects of graph-
ical displays and fail to take in the larger picture of the entire distribution (e.g., Friel, 
Curcio, and Bright, 2001). For example, students will focus on a particular value, such 
as the most common value or the maximum value, and not consider the whole graph-
ical display of the data. While a particular value may be important, overall patterns are 
equally, if not more, important. Thus, a focus of teaching distributions to students is 
getting them to note general patterns and possible trends.

The goal of this unit is to introduce distributions, graphical displays and visualization 
of distributions, shapes of distributions, measures of center, and measures of variabil-
ity, as well as how to use these characteristics of distributions to draw meaningful con-
clusions about variables, while finding patterns in data.
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Investigation 1C.1: School Dance

Goals for this investigation: Engage in the statistical investigative process  

and visualize data through distributions for categorical variables.

Suppose a middle school is interested in organizing a school dance. Some details about the 
event have yet to be decided and the committee of teachers organizing the dance seeks to 
gather student input in order to make some of the decisions. In particular, a decision needs 
to be made about the music offerings at the dance. Several different investigative questions 
could be posed to prompt data collection and help make a decision about the music to be 
played at the dance. For example, the following investigative questions would work: 

1. What types of music are preferred by students at the middle school?
2. What music genres do students at the middle school prefer?

Each of these questions requires a statistical investigation to answer them: Data must be 
collected, analyzed, and interpreted in order to provide answers to each of these ques-
tions. Once a decision is made regarding the research question, a data collection plan must 
be formed. It is important to note that the plan for data collection must align with the 
goals of the study. As discussed in previous units, the population being studied is dictated 
by the investigative question posed. 

For instance, if the scope of a study is about a particular group of students, then the pop-
ulation consists of all students in that group. If one is looking to understand what, for 
example, the sixth grade class thinks about a specific issue, then surveying the entire sixth 
grade class (taking a census) is a practical plan. However, if the population is all students 
at a large middle school and it would not be feasible to obtain information from each stu-
dent, then one might need to collect data from a sample of students. 

Suppose the following investigative question is chosen: 

What types of music are preferred by students at the middle school?

For this investigative question, we could construct a survey that asks students their music 
preferences. The survey question to collect data could be: 

What is your favorite type of music to have played at dances? 
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Responses to this survey question will produce data. The observational unit is the stu-
dent and the variable defined is the type of music that the student identified as their 
favorite. This variable is categorical. Possible values of this variable are rap, rock, etc. 
Notice that the survey question is aimed at gathering information about each surveyed 
student’s favorite type of music, while the investigative question is about the prefer-
ences of all students at the school. An issue with this type of survey question is that 
it may produce so many different responses from students that it could be difficult to 
analyze the data and make a decision about the type of music to be played at the dance. 
Because of this, it might be more useful to ask a closed question about music prefer-
ences. Such a survey question might read:

Do you prefer that rap, rock, classical, hip-hop, or country be played at the dance?

The advantage of the closed question is that students are forced to choose among the 
five options. If the researcher leaves the question open-ended, then the researcher risks 
having too many different types of responses that would need to be further sorted into 
categories. A disadvantage of the closed question is that it could be limiting for the survey 
taker and possibly not align perfectly with students’ preferences. A data collection plan 
also includes how the survey will be distributed (e.g., paper copies or electronic and at 
what time of day/school period), and how the overall data set will be organized (e.g., 
spreadsheet, Google document).  

While it would be ideal to garner every student’s opinion, the possibility of conducting 
a census of the school might not be practical. If this were the case, then one must adjust 
one’s data collection plan to obtain data that would allow for the analysis and interpreta-
tion to occur. If you can’t take a census, another option would be to take a sample from 
the population of students of interest. There are many ways to take samples from popu-
lations. For the purpose of introducing distributions, let’s assume that the school admin-
istrators sampled 100 students; surveys were handed out to them in paper form, and 
the students were asked to complete the survey on the spot to ensure that every student 
selected responses to the questions. The sample responses given by the 100 students at a 
middle school are provided in SchoolDance.csv2. 

As mentioned previously, our first goal in analyzing the data is to visualize the distribu-
tion of the variable. We do this by creating graphical displays for the variable. Because 
students’ musical preference is a categorical variable, we have several options for graph-
ical displays to visualize the distribution of preferences. The distributions of categorical 

2 These data are fabricated to be plausible and realistic. 
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variables can be visualized using a bar graph, a pie chart, or a table. We will look at 
each of these options to see how the different displays provide different types of infor-
mation. We will start with a table. 

Frequency Table Results for Music Preferences

Music Preferences Frequency Percent

Classical 3 3%

Country 22 22%

Hip-Hop 34 34%

Rap 11 11%

Rock 30 30%

The table shows the counts as well as the relative frequency of each category. For example, 
the count or the frequency of students who like rap is 11. The rap has a relative frequency 
of  11% of the total number of students. We can see that hip-hop is the most popular genre, 
garnering 34% of the student preferences; rock comes in second, with 30% of the vote; and 
country comes in third, with 22% of the vote.  

Because we are looking to see if any particular music types are predominantly preferred 
by the students, a bar graph may be a good choice for a display. A bar graph shows the 
categories of the music preference variable on the horizontal axis, and the frequency with 
which the categories are chosen by the students on the vertical axis. Alternatively, a bar 
graph could display the music preference variable on the vertical axis, and the relative 
frequency on the horizontal axis as a side bar graph. A bar graph allows us to view dif-
ferences in frequencies by merely comparing the heights of the bars. The following bar 
graph (frequency counts on the vertical axis) indicates hip-hop was selected as the music 
of choice for the school dance by 34 students, rock was selected by 30 students, country 
was selected by 22 students, rap by 11 students, and classic rock by 3 students. The mode 
of the data is therefore the hip-hop category. The mode of a categorical variable is the 
category that occurs the most often. When referring to the typical value in a categorical 
data set, we are alluding to the mode. In this case, we call hip-hop the modal category, 
indicating that this was the most popular music choice among students. 



Unit 1C: Introduction to Distributions   | 29

The third way to visualize the dis-
tribution of a categorical variable 
is through a pie chart. A pie chart 
displays each category as parts of 
the whole. The preference data can 
be visualized by this pie chart. 

The pie graph shows that three 
main musical categories, hip-hop, 
rock, and country, dominate the 
preferences, while rap and classic rock were selected by a much smaller percentage of the 
sampled students. We can see that there is a fair amount of variability in these data, as 
no one category really dominates the rest. Variability, for categorical variables, describes 
how diverse the responses are across the response categories. As an exercise, one should 
envision what a pie graph might look like for a categorical variable as the differences 
among frequencies decrease and increase. This exercise could also be done with a bar 
graph possibly showing a clear preference of one category, say hip-hop, with more than 
50%, and the other categories with small percentages. While there is no standard formal 
measure of variability for categorical variables noted in current state standards for school-
level education, measures of variability for categorical variables do exist (see, for example, 
Kader and Perry, 2007). 
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Using the information from all three of the displays, we suggest that the music at the 
school dance consist of mostly hip-hop and rock, with some country songs incorporated 
throughout the dance. This investigation illustrated that we can display the distributions 
of categorical variables in three ways. Each type of display may offer different insights 
about the data. For example, when the variable has many categories, a pie chart might 
be difficult to read; thus, a bar graph or a table may be better options to view. When we 
want to visualize the categories as parts of a whole and compare the relative size of each 
category, a pie chart offers a very good visual. If the data have a very dominant category, 
the pie chart can easily draw attention to this fact. However, the bar graph would be the 
best option to see the modal category if each category had similar frequencies. A table is 
a worthwhile option when one wants to note the exact counts or relative frequency in 
each category. When visualizing the distribution of a categorical variable, it is important 
to consider which type of display is best for the variable at hand. It is preferable to look at 
multiple displays of distributions in order to explore all aspects of the variable.

INVESTIGATION SUMMARY: 
The main concepts developed in the school dance investigation are: 

1. The distribution of a categorical variable can be represented and visualized 
through a bar graph, a pie chart, or a table.  

2. Many categorical variables are summarized by their modal category and 
described by how often each category occurs.  

3. The variability of a categorical variable can be gauged by how much disagree-
ment there is in the responses across the various categories. When there is a lot 
of agreement (a large number of responses in one category), then there is a little 
variability in the data. If all responses are in the same category, then there is no 
variability in the data. The more disagreement, the more variability. 

Investigation 1C.2: Practice Test Scores

Goals for this investigation: Engage in the statistical investigative process, visualize data 

through distributions for quantitative variables, and measure possible variation in the data.

Mr. Garcia is a middle-school teacher. He is interested in understanding how his students 
are performing on a practice test for the state’s standardized test administered at the end 
of the school year. He poses the following investigative question:
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What are typical test scores on the practice test taken by Mr. Garcia’s students?

Mr. Garcia has a total of 96 students in three classes. All of his classes have students with 
similar academic abilities, but he is unsure how they will perform on a standardized test. 
The students’ results on Mr. Garcia’s practice tests are given in PracticeTestScores.csv.

Mr. Garcia is interested in knowing the typical test score of students in his classes. The 
test score variable is quantitative; therefore, the graphical displays used in the previous 
investigation with a categorical variable are not appropriate. The distributions of quan-
titative variables can be visualized using dotplots, histograms, or boxplots. In this 
unit, we will focus on introducing dotplots (also sometimes referred to as line plots, but 
throughout this book will be called dotplots) and histograms. Boxplots will be discussed 
in the next unit, when we begin comparing distributions. To begin this investigation, we 
will use a dotplot to visualize the data:

Each dot on the plot represents a student’s test score. When describing the distribution 
of a quantitative variable, we first focus on describing its shape, center, and variability. 
This dotplot has a single-mounded shape centered on a test score of 70 points. The distri-
bution appears to be approximately symmetric3 about the test score of 70, with about the 
same number of scores on either side of 70. As you get further from either side of 70, the 
frequency of data points tends to decrease.  

Because of the approximate symmetry of the distribution about the center and the single 
mound of the distribution, the mean (computed by summing all of the practice test scores 
and dividing by the total number of scores) is an appropriate measure of center for these 

3 Note that if a distribution is symmetric, it does not necessarily mean that it is normal. A normal distribution 
is a very specific type of continuous distribution that has specific features and properties in addition to being 
symmetric.
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data. If, for example, the distribution was not symmetric, then it might be more appropri-
ate to use the median (computed by putting all of the test scores in ascending order and 
then finding the middle score of the data) to describe the center of the distribution. 

Because we’re using the mean to note the center of the data distribution, the mean abso-

lute deviation (MAD) provides a good introductory measure of variation for the data 
along with the range. We can see that test scores vary from 39 to 100, thus giving a range 
of 61 points (range = maximum value-minimum value = 100-39). Thus, 61 is the 
maximum possible distance between any two scores. We can also conceptualize the vari-
ability as the average distance of the points from the center of 70 through the MAD. To 
describe the variability in this way, we consider the distance of each of the student’s scores 
from the mean value of 71.71. For example, there are a few students who have scored 40 
points on the practice test. These students are approximately 30 points away from the 
central value. On the other hand, there are also students who have scored 100 points. 
These are also approximately 30 points away from the central value. Overall we can con-
sider the distances from the mean value for every student, then find the average (mean) 
of these distances. This is important because it will give us a numeric value to summarize 
the variability from the mean in the data set. This numeric summary is the MAD. 

To be precise, we carry out the computation. To compute the MAD, we calculate the 
distance from each point to 71.71 (the mean). This can be quickly done with software, 
such as Excel, by setting up formulas in a spreadsheet. An image of such an Excel spread-
sheet is below. The spreadsheet shows the formula for the distance from the mean as 
the absolute value of the score minus the mean for each observation: 
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The spreadsheet shows that in column B we compute the distance from 71.71 for  
each test score. This is because we are not concerned about whether the test score is 
below or above the mean; we are merely concerned about its distance from the mean 
test score. 

Cell E1 shows the total distance, 1108, away from the mean for the entire group of 
96 students. To find the average absolute distance from the mean in cell E2, we then 
divide the total by 96, the number of test scores. The average distance from the mean, 
calculated as 11.54 points, is the MAD. The MAD is equal to the SUM[(observation-
mean)]/number of observations and given by the following equation: 

MAD =  
∑(X

i
 − X)
n

where X
i
 represents observation i, X represents the mean, and is equal to the number of 

observations.

The MAD provides a simple computable measure of the variation present in the data. 
It is the mean distance of the data points from the mean value of the variable. In the 
context of test scores, a MAD of 11.54 seems quite large. The MAD shows that, on 
average, the 96 test scores vary from the mean test score of 71.71 by 11.54 points. 
Consider the letter-grade differences for a student who received a test score of 11.54 
points above the mean, compared with a student test score of 11.54 points below the 
mean. This grade differential would be approximately 23 points, thus largely shifting 
their grades. 

Another measure of variability that is often used is the standard deviation. Teachers will 
use the MAD with their middle-school students, and the standard deviation will be intro-
duced in the general high-school math curriculum or in AP statistics. 

The standard deviation measures the typical distance of test scores away from the 
mean, but unlike the MAD, which uses the absolute value to make the differences posi-
tive, the standard deviation squares the differences (see Franklin et al. 2020 as a resource 
for teaching and learning of the MAD). After the squared differences are computed, they 
are averaged (dividing by n-1 instead of n), and then the square root is taken to find the 
standard deviation. Again, for these data, we can use an Excel spreadsheet and specific 
formulas to show the computation:
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The standard deviation for these data is given by the following formula: 

SD =  (X
i
 − X )2

96 − 1∑
i = 1

96

The standard deviation is typically found by dividing by one less than the number of 
observations in the data set (n-1). The sample mean is used to find the distance of an 
observation from the mean that is the balance point of the distribution. Thus, these dif-
ferences of the (observed - mean) only provide n-1 unique pieces of information as the 
last difference must be whatever allows the sum of the differences to be zero. It can be 
shown mathematically that if the standard deviation is divided by n, the sample standard 
deviation will underestimate the population standard deviation. For more on this topic, 
one can view the following video: 
www.khanacademy.org/math/ap-statistics/summarizing-quantitative-data-ap/
more-standard-deviation/v/review-and-intuition-why-we-divide-by-n-1-for-the-un-
biased-sample-variance)

The entry in cell F3 shows the standard deviation as 14.63. While this is similar to the 
value of the MAD (11.54), it is slightly larger. This is because when squaring instead of 
taking the absolute value, the standard deviation is more affected by values that are fur-
ther away from the mean. For example, consider the test score of 40 in cell A2. That is a 
low test score value in Mr. Garcia’s classes, and it is very far from the mean. The squared 
distance from the mean for the score of 40 is 1005.53, which is very large. For this same 
test score value, instead of the squared distance, the MAD uses an absolute distance from 
the mean of 31.71, much smaller. 

https://www.khanacademy.org/math/ap-statistics/summarizing-quantitative-data-ap/more-standard-deviation/v/review-and-intuition-why-we-divide-by-n-1-for-the-unbiased-sample-variance
https://www.khanacademy.org/math/ap-statistics/summarizing-quantitative-data-ap/more-standard-deviation/v/review-and-intuition-why-we-divide-by-n-1-for-the-unbiased-sample-variance
https://www.khanacademy.org/math/ap-statistics/summarizing-quantitative-data-ap/more-standard-deviation/v/review-and-intuition-why-we-divide-by-n-1-for-the-unbiased-sample-variance
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To compare how the MAD and the standard deviation treat far-away and close values 
to the mean, consider the value in cell A4, 76, a test score that is close to the mean. 
The MAD uses the absolute distance from the mean at 4.29, while the standard devi-
ation uses the squared distance at 18.4. While the standard deviation distance value is 
still larger than the MAD value, it is not so much larger, unlike the case of the value of 
40, seen in cell A2, which is far from the mean. The MAD considers a distance from 
a value to the mean in the absolute value, which is linear, while the standard devia-
tion considers the distance between a value and the mean squared, which is quadratic; 
therefore, as an individual value gets further and further away from the mean, the 
standard deviation grows faster than the MAD.

Both measures of variability offer insight into the overall deviation of the data values 
from the mean. The standard deviation will always be greater than or equal to the 
MAD because it weights the extreme values more. In general, the MAD is intro-
duced in middle school as a measure of variability for quantitative variables because 
its computation is more intuitive than the standard deviation. Students have an 
easier time understanding the idea of computing a direct average distance from the 
mean than understanding the formula for the standard deviation. The formula for 
the MAD is direct, while the standard deviation hides some underlying nuances that 
are difficult for students to grasp. However, because the standard deviation is com-
puted by squaring the distances from the mean instead of taking the absolute value 
of the distances from the mean, it becomes easier to deal with in advanced settings 
when one needs to take derivatives and integrals. In these settings, dealing with an 
exponent instead of an absolute value is much preferred. For these reasons the stan-
dard deviation is taught as early as high school and is the standard measure of vari-
ability used in high school and beyond. 

In summary, the answer to the investigative question is that the mean test score for Mr. 
Garcia’s class is 71.71. The mean can be interpreted as the balance point of the distri-
bution (see GAISE II for an example developing this idea). The shape of the distribution 
(roughly symmetric) makes the mean an appropriate choice for the typical value. The 
variability of the test scores is large, so although Mr. Garcia has many students that are 
well prepared for the test, he also has many students scoring poorly. The MAD and the 
standard deviation, valued at 11.54 and 14.55, show that on average, students were an 
entire letter grade off of the mean score. Ideally, to do well on the standardized test, Mr. 
Garcia’s students need to increase their mean test score value and have a smaller amount 
of variability around the typical value. To have smaller variability, all students would 
need to score closer to the typical test score.
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INVESTIGATION SUMMARY: 
The main concepts developed in the practice test scores investigation are: 

1. The distribution of a quantitative variable can be represented and visualized 
through a dotplot.

2. The distribution of a quantitative variable can be described by its shape, center, 
and variability.

3. The variability from the mean of a quantitative variable can be described by the 
MAD and/or the standard deviation. The MAD is a more intuitive measure of 
variability; thus, it is taught in middle school. The standard deviation is then 
taught in high school.

Investigation 1C.3: Companies in Town

Goals for this investigation: Engage in the statistical investigative process  

and visualize data through graphical displays for quantitative variables.

The mayor of Mira Beach, a small beach town, is interested in understanding the financial 
profits of companies in town and identifying potential factors that might lead to people 
becoming successful business owners in the future. More specifically, the mayor is inter-
ested in investigating two questions: 

 • What is the typical weekly profit made by companies in town?
 • What is the typical educational level of company leaders in town?

The small town has a total of 98 companies. As part of their annual reports to the 
Chamber of Commerce, these companies have to report on demographic and back-
ground information for their CEOs and their profit earnings as average profit per 
week in dollars. The mayor of the town has access to these annual reports and desires 
to answer the aforementioned investigative questions. The data are included in 
AnnualReport.csv4.

4  Data adapted from Insurance Profits data set, available on StatCrunch.



Unit 1C: Introduction to Distributions   | 37

As part of the demographic data, the CEOs report their educational level. The levels are 
reported in the following manner: 

1 = High school
2 = Professional degree (technology, nursing, etc.)
3 = BA/BS
4 = Master’s (MBA, MS, MA, MFA, etc.)
5 = PhD or equivalent

As a first part of the investigation, the mayor of the town aims to investigate the answer 
to the following question: 

 • What are the typical weekly profits made by companies in town?

Because we are interested in understanding what the typical profits are, we would like 
to visualize the distribution of the data to see if there are specific values of weekly prof-
its that occur more frequently than others or if the profits are centered on a specific 
value. The profits variable is a quantitative variable, so dotplots, histograms, and box-
plots are appropriate graphics to visualize the data. We begin by making a dotplot of 
the profits. 

The dotplot provides a fine-grained visual of the average weekly profits in the town, 
because each dot represents the average annual weekly profits of one of the 98 compa-
nies. When looking at the distribution of a quantitative variable, we begin by describ-
ing the shape, center, and variability. A skewed distribution is one in which one of 
its tails is longer than the other. A tail refers to either end of the values on the hori-
zontal axis of the distribution. We say this distribution is skewed right, because a large 
cluster of companies (85 out of 98) have weekly profits between $0 and approximate-
ly $5500, with a tail on the right end because a few companies posted weekly profits 
greater than $6000. 
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Based on the dotplot and attempting to draw a balance point line on the graphs, we would 
also estimate a typical profit for the companies in the town of about $2000. Because of the 
skewed right nature of the distribution, we would expect the median profit to be less than 
the mean profit, since the mean is pulled in the direction of the longer tail. This is because 
the mean uses each of the data values in its computation, so it will become larger if there 
are higher values present in the data. On the other hand, the median represents the halfway 
point in the data (the 50th percentile) and does not use each of the data values in its compu-
tation; therefore, it is not sensitive to extreme values of the variable. Because of this, when a 
distribution is skewed, the median is a more appropriate measure to describe a typical value. 

The 98 companies had weekly profits that varied from as low as −$2,000 to as high as 
$10,500. Three companies had losses and 10 companies had profits in excess of approxi-
mately $7500. The range in the profits is approximately $12,000. Using software, we com-
pute the standard deviation to be approximately $2683. This value can be interpreted as 
the typical deviation from the mean profit of the companies in the town. In the context of 
profits, this deviation seems moderate.

Because there are many different profit values, it might be useful to form profit  
“bins” (or intervals) of data that group similar profits. This type of graph is called a his-

togram; following is a histogram for the weekly profit data. 

By looking at the histogram, we can attempt to identify a center. Because the distribution is 
skewed, the median is an appropriate measure of center.  Without computing the median 
explicitly, the histogram suggests that the median lies somewhere around $2000. Overall, 
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locating the center of a distribution when the distribution is skewed is difficult to do 
through visualization. 

Students might want to describe the center as the interval of $0–$1000 because that is the 
interval with the highest bar and therefore the most data. There are two main issues with 
this reasoning. First, profits is a quantitative variable, and thus the preferred measures 
of center to use are the mean or the median (we usually reserve the modal category for 
categorical variables). Second, reporting the typical value to be within $0–$1000 does not 
take into consideration the shape of the distribution or the variability present. Typical 
values should be representative of the values of the variable in some way. Reporting the 
$0 to $1000 interval would not, for example, represent the profits of the companies that 
are larger. Therefore, a typical value that is somewhat more in the middle of the values 
would be better suited. 

As noted previously, the center could be the mean or the median, depending on the 
shape and variability of the data. For these profit values, the distribution is skewed, so 
the median better represents the typical value of the data. It could also be the case that a 
distribution of a quantitative variable showed the mean or the median not near the most 
common values. For example, the following graph is considered a symmetric distribu-
tion with two clusters or humps (bimodal). The mean and the median would both lie in 
the middle of the two humps where no values occur; thus, they would certainly not be 
good descriptors of typical values. While the measures of center do not describe the most 
common values, they do describe the balance point and the halfway point in the data. In 
this sense, they could still be used to represent typicalness, although in this case, it would 
be best to describe the typical values as the two modal categories in each cluster, namely 
approximately 3 and approximately 19.
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Dotplots can reveal more fine-grained patterns because they show the value of every com-
pany’s profits, while histograms can uncover large patterns because the values are repre-
sented in larger bins. The histogram reveals that there are several companies that make 
large weekly profits around $8000 and above. The histogram makes clear that the shape 
of the distribution is skewed. Overall, the mean profit is driven up by these large-profit 
companies, which could be referred to as outliers (the concept of an outlier is discussed 
further in other investigations). Because the mean is sensitive to the skewedness in the 
shape of the distribution, we would guess the mean weekly profit to be around $3000 
per week, even though we visually estimated the typical value to be around $2000. How-
ever, because the mean is sensitive to these few larger values, the median, which seems 
to be around $2000, is more representative of the center of the distribution. Examining 
the graphical displays and visually trying to note where the mean and the median lie, as 
well as noting the overall shape and variability present in the data, is a useful exercise. It 
is important to examine the graphical displays before jumping directly to computation to 
build intuition. After the visual interpretation, we can also compute the exact statistics: 

Summary Statistics:

Variable Mean Median

Profit 2561.7 1644.5

The calculations show that our estimations based on the graphical displays were relatively 
accurate. The mean value of $2561 can be interpreted as the balance point or the “fair 
share” point of the distribution of profits. (See www.statisticsteacher.org/2020/11/12/the-
mean-and-variability/ for a description of the mean as a balance point). We can imagine 
collecting all of the profits from the companies, and if we were to distribute these profits 
so every company in town had the same profit, then every company would have approxi-
mately $2561 in profits. The median also may be interpreted as a balance point as proposed 
by Lesser, Wagler, and Abormegah (2014). They show how to build a physical model 
to help conceptualize the mean and median as balance points of the data. See http://jse.
amstat.org/v22n3/lesser.pdf.

At this point, we need to decide what value is the most representative of a typical 
profit value in this town. Based on the histogram visualization, we observed that 
the typical value would be around $2000. The median is $1645, which is close to our 
visual estimate. Because the higher profits of a few companies skewed the distribu-
tion to the right, the mean is larger than the median. The median is not as sensitive 

https://www.statisticsteacher.org/2020/11/12/the-mean-and-variability/
https://www.statisticsteacher.org/2020/11/12/the-mean-and-variability/
http://jse.amstat.org/v22n3/lesser.pdf
http://jse.amstat.org/v22n3/lesser.pdf


Unit 1C: Introduction to Distributions   | 41

to these higher values and thus remains lower. In the case of a skewed distribution, 
the median provides a better representation of the typical value of weekly profits for 
the town.

INVESTIGATION SUMMARY: 
The main concepts developed in the companies in town investigation are: 

1. The distribution of a quantitative variable can be visualized through a dotplot 
and a histogram. 

2. The distribution of a quantitative variable can be described by its shape, center, 
and variability. 

3. A typical value for a quantitative variable can be summarized by the mean 
and median. The choice of which one represents the variable in a better way 
depends on the shape of the distribution.

In this unit, we introduced various graphical displays to visualize the distributions of 
categorical and quantitative variables. Each of these graphical displays is explicitly dis-
cussed in GAISE, SET, and current state standards. While they are all important, the 
sophistication of their features make some types of graphs more appropriate for differ-
ent grade levels. 

Categorical variables are a large focus in the elementary grades; thus, pie charts, bar 
graphs, and frequency tables are considered appropriate for the grade band. Quantitative 
variables and their graphs are more complex. Dotplots, histograms, and boxplots are 
introduced at the middle-school level. These suggestions align with the GAISE levels A, B, 
and C, which roughly coincide with elementary, middle, and high school. Similarly, the 
different ways to describe variability of quantitative variables are appropriate for different 
levels of students. The MAD is introduced in middle school, while the standard devia-
tion is introduced in high school. For the measures of center, the mode is a categorical 
summary statistic and is recommended for elementary students, while the mean and the 
median are quantitative variable descriptors and are appropriate for upper elementary 
school and beyond. This unit provides an initial introduction to distributions and features 
of distributions for teachers of all grade bands. 

Follow-Up Problems
1. Give examples of investigative questions that you could lead with your class 

related to the preference of fourth graders visiting a zoo, aquarium, or waterpark 
for a field trip.
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The preference data from the fourth grade class at a school district was collect-
ed in the data set EndofYearParty.csv. Analyze and interpret these data to answer 
your posed investigative question using appropriate graphical displays.

2. The mayor in Investigation 1C.3, Companies in Town, articulated a second 
question to investigate: What is the typical educational level of company leaders 
in the town?

3. Give examples of statistical questions that you could pose to your class on foot 
measurement in fifth grade versus foot measurement in second grade.

Foot measurement data from a fifth grade class and a second grade class was 
collected in the data set FootMeasures5&2.csv. Analyze and interpret these data 
to answer your posed investigative question using appropriate graphical displays. 
Give examples of statistical questions that you could pose to your class on foot 
measurement in fifth grade versus foot measurement in second grade.

4. Investigation 1C.1 walks through the computation of the MAD using Excel soft-
ware. Compute the MAD for the foot measurements in both grade 5 and grade 2.

Reference for This Unit
Bargagliotti, A., Franklin, C., Arnold, P., Gould, R., Johnson, S., Perez, L., and D. 

Spangler. 2020. Pre-K–12 guidelines for assessment and instruction in statistics educa-

tion II (GAISE II) report. American Statistical Association and National Council of 
Teachers of Mathematics.

Franklin, C., Kader, G., Jacobbe, T., and K. Maddox. 2020. The mean and variabili-
ty from the mean. Statistics Teacher. www.statisticsteacher.org/2020/11/12/the 
-mean-and-variability.

Friel, S.N., Curcio, F.R., and G.W. Bright. 2001. Making sense of graphs: Critical fac-
tors influencing comprehension and instructional implications. Journal for Research 

in Mathematics Education 32: 124–58.
Kader, G.D., and M. Perry. 2007. Variability for categorical variables. Journal of Statistics 

Education 15(2).
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UNIT 1D:
Comparing Distributions

The previous unit introduced distributions and explored the importance of using dis-
tributions to answer investigative questions. We saw that visualizing the distributions 
of variables helped us conduct analyses in a statistical investigation. Analyses can help 
us answer questions, such as what is a typical value or what music do students at a 
school prefer to play at a school dance. Distributions for quantitative variables can be 
summarized and described by their shape, center, and variability. Distributions for cat-
egorical variables can be summarized by their modal category, their frequencies, their 
relative frequencies, and the overall amount of disagreement and agreement between 
categories to quantify the variability of a categorical variable’s distributions. This unit 
focuses on using distributions to draw comparisons between groups. 

Investigation 1D.1: Student Sleep Patterns

Goals of this investigation: Engage in the statistical investigative process  

and compare distributions of quantitative data.

For humans to function properly, they need sleep. The National Institutes of Health 
(NIH) states: “Sleep plays a vital role in good health and well-being throughout your 
life. Getting enough quality sleep at the right times can help protect your mental health, 
physical health, quality of life, and safety.” The topic of sleep and how it affects perfor-
mance is discussed exten-
sively in medical studies, 
cognitive studies, educa-
tion studies, and sports 
performance studies. The 
table provides NIH rec-
ommendations for sleep 
amounts for people of dif-
ferent ages.

Age Recommended Amount of Sleep

Newborns 16–18 hours a day

Preschool-aged children 11–12 hours a day

School-aged children At least 10 hours a day

Teens 9–10 hours a day

Adults (including the elderly) 7–8 hours a day

www .nhlbi .nih .gov/health/health-topics/topics/sdd/howmuch

http://www.nhlbi.nih.gov/health/health-topics/topics/sdd/howmuch
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As can be seen in the table, middle-school and high-school students need approximately 
10 hours of sleep per day. To date, there is much discussion around the large number of 
hours students spend doing homework and extracurricular activities. There is concern 
about how these activities are negatively affecting adolescent sleep habits and having 
potentially negative effects on their health. When students have homework and extra-
curricular activities for long hours, they are not able to rest their bodies, thus causing 
concern over the effects on healthy brain function, physical health, and the ability to 
function during the day. In this investigation, we will consider these ideas by examin-
ing students’ sleep patterns.

In a local district, the principal of the high school is interested in comparing sleep pat-
terns of students in the different high-school grade levels. The principal has observed 
homework pressures rise for students as they progress through high school, and he would 
like to understand if this progression affects students’ sleeping patterns. He is particularly 
interested in sophomores, juniors, and seniors, because high academic pressure on stu-
dents is typically reported in these years.

The principal selected 180 students each from the first periods of the sophomore, 
junior, and senior classes and asked them to record the amount they slept on a particu-
lar Wednesday night. The students were asked to report their hours in a shared Google 
document the next day during first period. Specifically, the exact prompt was: “At what 
time did you go to bed last night and what time did you wake up this morning?”

The principal then took their responses and found the difference rounded to the nearest 
tenth. The number of hours of sleep each student got the night prior was then recorded 
in StudentSleep.csv.

Using the data in StudentSleep.csv, answer the following investigative question: 

How do the sleep patterns of the students in the different grades compare?

To answer this investigative question, let’s first graphically display the distribution of 
the sleep patterns of the students in the three grades. Because the amount of sleep a 
student gets in a night is a quantitative variable, the three appropriate graphical dis-
plays to visualize the distribution of the data are the dotplot, the histogram, and the 
boxplot. The different types of displays will highlight the differences and similarities 
among each grade level. 
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Let’s begin by comparing the dotplots of the students’ sleep patterns among the  
three classes:

Approximately 36% of seniors, 17% of juniors, and 18% of sophomores got 10 or more 
hours of sleep. The dotplot for the seniors’ sleep time appears to be evenly distributed 
between 5.5 hours to 12.2 hours. In other words, for every recorded hourly value between 
5.5 and 12.2, the number of seniors sleeping for a given number of hours is approximately 
the same. Distributions with this property are said to be uniform. Note that this distribu-
tion is also reasonably symmetric with a central value located between 8 and 9 hours.  

The juniors appear to have sleep patterns that are mound-shaped, with most of the 
juniors sleeping around 9.5 hours on the selected night. The further away the values get 
from 9.5 (in both directions), the less often they occur. This distribution is mound-shaped 
and somewhat symmetric. So, we say that the sample distribution of juniors’ sleep pat-
terns is approximately bell-shaped.

The sophomores’ distribution illustrates that no sophomore slept less than 7.3 hours on 
the selected night. The majority of sophomores slept 7–9 hours, and very few students 
got more than 9 hours of sleep. The greater the number of hours of sleep, the fewer the 
number of students. We see that as the number of hours of sleep increases, the number of 
sophomores that sleep these higher hours trickles off. There are fewer students who sleep 
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more hours compared with those who sleep less hours. Because the tail of the distribution 
falls to the right, we say the shape is right-tailed; therefore, the distribution is skewed right. 

The histograms of the distributions show information similar to that in the dotplots. 
On a dotplot, the data corresponding to the individual are represented by a dot, but on a 
histogram, the data are grouped into bins. In the following histograms, the hours slept are 
grouped in bins that have a width of 0.5 hours (the widths can be adjusted as one prefers). 
The histograms show the skewness of the number of hours the sophomores slept, the 
mound-shaped distribution of the number of hours the juniors slept, and the uniformity 
of the number of hours the seniors slept. Because histograms group data, it is sometimes 
easier to see the overall shape of a distribution, but we lose the visualization of the indi-
vidual observations as seen in the dotplot. For example, while the dotplot certainly illus-
trates the single-moundness of the juniors, this shape is easier to spot in the histogram. 

Another useful visualization for comparing the distributions is to use boxplots (also 
referred to as box-and-whiskers plots). Boxplots visualize measures of position of the 
data. They provide another way to look at the distribution by bringing to light patterns, 
such as comparisons of the different quartiles of the data and comparisons of the medi-
ans. Boxplots are visualizations of a distribution’s five-number summary consisting of 
the minimum value, the first-quartile value (Q1 or 25th percentile), the median (Q2 
or 50th percentile), the third-quartile value (Q3 or 75th percentile), and the maximum 
value. In other words, each five-number summary divides the data into quarters (each 
group contains approximately 25% of the data) and then uses these values to draw a 
boxplot; see the following figure. 
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To find the quartiles, the data are ordered, the ordered data is divided into four parts 
with approximately the same number of data points in each group. The quartiles are the 
cutoffs for separation of the data based on this division. That is, the first quartile (Q1) 
represents the value that approximately 25% of the data are below; the second quartile 
(also the median) represents the value that approximately 50% of the data are below; and 
the third quartile (Q3) represents the value that approximately 75% of the data are below.

The following three boxplots visualize these measures of position for the three samples 
of students. 

 

The vertical line in the middle of the boxes represents the median for that sample’s 
values, the upper and lower edge of the box are drawn to the first- and third-quar-
tile values, and the “whiskers” coming from the box are drawn to the minimum and 
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maximum values. If the data contain an extreme value, also called an outlier, the whis-
ker will stop at the largest or smallest data value that isn’t an outlier. An outlier is 
defined as a value that is abnormally extreme. While the context of the data informs 
what should be considered an abnormally extreme value, a standard determinant used 
in practice is whether the point is more than 1.5 interquartile range (IQR) values 
away from the first or third quartile. The IQR measures the length of the box in the 
boxplot and can be computed by finding the difference between the first and third 
quartiles. This represents the range of the middle 50 percent of the data. For example, 
the boxplot describing the sleep data from the sophomores is built from the following 
five-number summary: 

Minimum: 7.4
First Quartile: 7.8
Median: 8.3
Third Quartile: 9.4
Maximum: 12

In this example, the IQR is equal to 9.4-7.8 = 1.6. An upper outlier would be a value 
that is greater than (1.5)*(1.6) + 9.4 = 11.8. This indicates that the sophomore data have 
four outliers—those can be seen in the boxplots as the dots past the end of the whisker, 
or in the dotplot. The dot plot shows that there are four such sleep times. 

When comparing boxplots, we want to look for the “overlap” and “separation” among 
the different grades’ sleep data. If the boxes overlap a lot, then the number of hours 
between each grade level’s sleep patterns is not that different. If instead the boxes are 
clearly separated, such as one box having no overlap with another, then the sleep pat-
terns are different. In this example, we see lots of overlap among the “boxes” in the graph, 
which means there is no clear difference in the sleep patterns of sophomore, junior, and 
senior students. 

To compare the grade levels’ variability, we can look at the length of the box, also known 
as the range of the middle half of the data, and observe that the juniors appear to have the 
smallest variation in sleep hours and that seniors have the largest variation. The sopho-
mores have an IQR = 9.4-7.4 = 2, the juniors have an IQR = 1.35, and the seniors have an 
IQR = 3.2. We can visually see that the IQR for the seniors is the largest, noting that their 
box is the longest. Additionally, we can see that the seniors have the largest range of sleep 
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hours, with a minimum value that is much smaller than the others. However, the median 
amount of hours of sleep for the three grades is very similar. The median lines are around 
8–9 hours for all grade levels. The IQR is a natural measure of variability to use when 
choosing the median as a measure of center.

Dotplots, histograms, and boxplots all provide graphical visualizations of the distributions 
of sleep patterns for the sophomores, juniors, and seniors. These visualizations help us 
identify and compare patterns in the sleep times for the students in the different classes. 
They help us answer our investigative question: How do the sleep patterns of the students 
in the different grades compare?

In comparing the distributions of the three grade levels of students’ sleep patterns, we 
see that the shapes of the distributions are vastly different. Whereas the seniors’ sleep 
times have an approximately uniform distribution, the juniors’s sleep patterns follow 
a mound-shaped, symmetric distribution, and the sophomores’ sleep patterns have a 
skewed distribution. The seniors have the most variability in sleep, both because there 
are approximately the same number of seniors sleeping all the different hours of sleep, 
and because they have the largest range. However, the amount of sleep the sophomores 
typically get is concentrated around 8 hours of sleep and never less than 7 hours of 
sleep. In the case of the juniors, they have the least amount of variability in sleep, con-
centrated around 9 hours, and fewer and fewer people sleeping hours above or below 
9. Although there appear to be differences in the variability of values for each of the 
grade-level samples, they all appear to have a similar number of typical hours of sleep, 
as visualized by the similar center value seen in all three of the plots. The dotplots and 
the histogram reveal typical sleep to be around 9 hours for the seniors and juniors and 
approximately 8.5 hours for the sophomores. The boxplots show that the medians are 
also close in value around 8 or 9.

It is important to note that all of the comparisons drawn at this point have been made 
by examining key features of the visualizations. Visualizing the distributions can provide  
an intuitive feel for the data and can also be used as a tool to see overall patterns and 
draw conclusions. 

To further check our interpretations based on the visualizations, we will compare var-
ious summary statistics. Here is a table illustrating the mean, median, standard devia-
tion, range, minimum, maximum, first-quartile, and third-quartile values for each of 
the grade levels. 
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Summary Statistics: 

Column n Mean Std. dev. Median Range Min Max Q1 Q3

Sophomores 180 8.8 1.3 8.3 4.6 7.4 12 7.8 9.4

Juniors 180 8.9 1.0 9.1 4.5 6.5 11 8.35 9.7

Seniors 180 9.0 1.9 8.9 6.8 5.4 12.2 7.4 10.6

As we can see, all of the comparisons drawn from our visualizations have been verified. 
To draw meaningful comparisons between groups, we must consider all of the summary 
statistics. For example, both of the following histograms have the same means and medi-
ans (represented by the red and green lines), but their variability is drastically different. 
One distribution is very spread out, and the other is very concentrated around the mean 
and the median values.

Instead of relying only on sum-
mary statistics, students should be 
encouraged to visualize the distri-
bution. Doing so enables one to see 
the numerical summaries, as well 
as the overall patterns in the data 
more clearly. In addition, a visu-
alization can help one understand 
the interplay between measures of 
center, measures of variability, and 
the shape of the data.

Now, let’s reflect on the inter-
pretations we drew previously. 
Evidence in prior studies and lit-
erature implies that students who 
get appropriate amounts of sleep 
should be healthier and thus, 
implicitly, should be able to per-
form at higher levels. It is import-
ant to note the limitations of the 
data. The data were collected for 
one single night’s sleep; therefore, 
all of our results are solely results 
about that Wednesday night. We 
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cannot adequately infer or generalize to other nights beyond our Wednesday night. While 
that is a limitation of this study, it is still worthwhile to compare the night’s sleep of the 
high schoolers on the typical Wednesday night.

Comparing the samples from the different grade levels by looking only at the number 
of students who are getting enough sleep according to the recommendations, we see 
that about half of the seniors get the recommended amount of sleep compared with 
the others. Looking at the boxplot, we can see this by focusing on the top half of the 
box. The top half of the boxplot for the seniors goes from about 9 to 11 hours, while 
the top half of the boxplot for the juniors goes from 8.5 to 9.5 hours. Out of all the 
grades surveyed, the juniors recorded the single minimum number of hours slept.

On the lower end, no sophomores had less than 7.4 hours of sleep, which is interesting 
compared with the lowest junior value of 6.5 hours and the lowest senior value of 5.5 
hours of sleep. Although the variation of sophomores’ recorded number of sleeping hours 
is slightly greater than that of the juniors, the fact that the sophomores did not dip below 
7.4 hours of sleep on a typical Wednesday night is encouraging, because NIH’s recom-
mendations state that people in this age bracket need 9–10 hours each day. 

Considering that NIH provides 9–10 hours as the recommended amount of time for 
students of this age, the majority of the students are not achieving that goal in a typical 
night’s sleep. However, the third quartile for seniors is a value above 10 hours, indicating 
that at least 25% of the seniors in the sample exceeded the recommended amount. 

In the context of sleep, and because the typical amount of sleep is similar across the 
grades (the means and the medians for all three grades are very close in value), put-
ting more weight on the variability in the values when drawing conclusions is justi-
fiable. Along these lines, the juniors have the lowest variation. However, some of the 
juniors do get less sleep than some of the sophomores. Students can be encouraged to 
wonder and brainstorm as to what might explain the difference in variability among 
the three groups. We can summarize our comparisons in the following manner.

Seniors: The seniors meet the requirement of 10 hours of sleep most often. The 
seniors also had the most people furthest from the recommended range of 9–10 
hours. The third-quartile value is above 10, indicating that at least 25% of the seniors 
sleep more than 10 hours.

Juniors: The juniors have the least amount of variability in values. They have the 
smallest standard deviation and range, indicating that the juniors have the most 
consistent amount of sleep for that Wednesday night. 
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Sophomores: The sophomores have the largest minimum value, indicating that 
no sophomores in the sample got below 7.4 hours of sleep, which at least meets 
the requirement for adults. The sophomores also have a high maximum value, 
indicating that several students get more than the recommended amount of sleep. 
This could possibly be due to them playing “catch-up” on sleep, depending on how 
many hours of sleep they had over previous nights. The sophomores also have a 
range of approximately 4 hours and a standard deviation of 1.2 hours, both indi-
cating high variability, although not the highest for the three grades.

INVESTIGATION SUMMARY: 
The main concepts developed in the sleep patterns investigation are: 

1. We can visualize the distribution of a quantitative variable through a dotplot, 
histogram, and boxplot. Each of these graphical displays highlights different 
patterns in the distribution, which makes it important to look at all of them in 
order to make informed conclusions.

2. Distributions have different shapes. Distributions can be symmetric such as 
uniform and mound shaped or skewed such as having a long left tail or a long 
right tail.  

3. Measures of center for quantitative variables are the mean and median. Mea-
sures of variability for quantitative variables are the standard deviation, the 
MAD, the IQR, and range. 

4. We can use the shape of the distribution, the measures of center, the measures 
of variability, the maximum and minimum values, the quartile values, the iden-
tification of outliers, and the context of the problem to extract patterns from 
data and draw meaningful conclusions.

Follow-Up Questions
1. Provide an explanation or a definition of a distribution of a variable.
2. Sketch a distribution for which the mean is greater than the median.
3. Sketch a distribution for which the mean is equal to the median.
4. Sketch a distribution for which the mean is smaller than the median.
5. What do students gain from looking at different graphical displays of distribu-

tions of the same data? What specific features of comparison are facilitated by 
boxplots, histograms, and dotplots?
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Investigation 1D.2: Restfulness 

Goals of this investigation: Engage in the statistical investigative process  

and compare distributions for categorical data.

As noted in Investigation 1D.1, the National Institutes of Health recommends the follow-
ing general amount of sleep for people of different ages:

Age Recommended Amount of Sleep

Newborns 16–18 hours a day

Preschool-aged children 11–12 hours a day

School-aged children At least 10 hours a day

Teens 9–10 hours a day

Adults (including the elderly) 7–8 hours a day

www .nhlbi .nih .gov/health/health-topics/topics/sdd/howmuch

Although the recommendations are specific, much variation exists related to the amount 
of sleep people get in reality. Some people claim they need less sleep than others, while 
others claim that they need much more. In some sense, each person has a baseline amount 
of sleep they believe they need in order to feel rested. In an effort to better understand 
how students within a school district are feeling when they come to school, teachers at 
the middle school and high school decide to conduct a small study to examine the sleep 
patterns of seventh grade and 11th grade students. The principals at the middle school and 
the high school selected 180 students from seventh grade and 11th grade and asked them 
to record how they felt on a typical Wednesday morning when they came to school. The 
students recorded whether they felt rested, somewhat rested, somewhat tired, or tired. 

The data are recorded in the data set StudentRest.csv. Using the data in StudentRest.csv, 
answer the following investigative question: 

How does the restfulness of the students in the different grades compare?

To answer the question, we need visualizations of the distributions of restfulness for the 
two student samples. Because the students recorded whether they were rested, somewhat 
rested, somewhat tired, or tired, each student can be identified with a category of restful-
ness; thus, the student rest data are categorical. Appropriate graphical displays to visualize 
the distributions of a categorical variable include pie charts and bar graphs. The displays 
for quantitative variables, such as dotplots or histograms, would not be appropriate for 

http://www.nhlbi.nih.gov/health/health-topics/topics/sdd/howmuch
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categorical variables because these visuals show sequential numerical relationships and 
categorical variables are not sequential between categories. Although pie charts and bar 
graphs visualize the same data, they may highlight different aspects of the data.

Let’s begin by examining the distributions of the restfulness of the two samples of stu-
dents through pie charts: 

The pie charts show that the seventh graders have similar percentages of people across the 
categories (high variability), while the 11th graders are more concentrated in the rested 
and tired categories, indicating that the 11th graders have less variability. Bar graphs can 
also help visually compare the differences between the categories across the two grades.

 The bar graphs reveal that 
the categories for the sev-
enth graders have a similar 
number of responses, while 
the 11th graders favored 
two specific responses. This 
again shows that the 11th 
graders are more concen-
trated in two categories; 
thus, the 11th-grade sample 
has less variability than 
the seventh grade sample. 
Looking at the bar graphs, 
we can see that the modal 
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category for the seventh 
graders is category 3 
(somewhat tired) and for 
the 11th graders it is cate-
gory 1 (rested). 

To further compare the 
samples of students’ rest-
fulness and see the exact 
counts in each category, 
we can visualize the data 
in a table and then exam-
ine the frequency and the 
percentage of data in each 
category for each grade. 

5 Note that the table offers rounded up values whereas the graphs might not.

Frequency Table Results for 11th Graders:

11th Graders Frequency Percentage

Rested 67 37%

Somewhat rested 19 11%

Somewhat tired 33 18%

Tired 61 34%

Frequency Table Results for Seventh Graders:

Seventh Graders Frequency Percentage

Rested 35 20%

Somewhat rested 47 26%

Somewhat tired 51 28%

Tired 47 26%

The tables illustrate the percentage of responses in each category for each grade. We 
see that the seventh and 11th grade students exhibit different patterns of restfulness. 
Compared with the seventh graders, the 11th graders have a higher percentage of people 
on the two extreme ends. There is a 17% difference between the seventh and 11th grad-
ers in the Rested category and an 8% difference between the grades in the Tired cate-
gory. Overall, it is harder to predict how rested a seventh grader will feel, because they are 
more variable regarding their levels of restfulness. The 11th graders are more predictable, 
because they are more likely to feel either rested or tired in the morning. The tables illus-
trate the percentage of responses in each category for each grade.5
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INVESTIGATION SUMMARY: 
The main concepts developed in the restfulness investigation are: 

1. We can visualize the distribution of a categorical variable through a pie chart, 
a bar chart, or a table. Each of these displays highlights different patterns in the 
data, so it is important to look at all of them.

2. To extract patterns from data and draw meaningful conclusions, we can use 
the modal category, the relative frequencies of the categories, and the graphi-
cal displays.

3. The variability of a categorical variable can be characterized as the amount of 
diversity or disagreement there is across categories. The more uniform across 
categories, the more variability.

Follow-Up Questions
1. How are graphical displays helpful for students to visualize distributions of  

categorical variables? What is more apparent to the reader from graphs than 
from tables?

2. Sketch the distribution of a categorical variable that is bimodal (i.e., having  
two modes).

3. Sketch the distribution of a categorical variable that is unimodal (i.e., having  
one mode).
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UNIT 1E:
Exploring Relationships 
between Variables

We are often interested in examining connections between variables. For example, 
we might want to know whether students’ GPAs are linked to their SAT scores, 
whether eating breakfast is associated with better test performance, or whether 
liking to watch sports is linked to playing sports. In all these cases, we have two vari-
ables of interest, and we want to explore how the variables are related. 

As we learned in previous units, there are two types of variables—categorical and 
quantitative. When we examine association between variables, there are three possi-
ble situations to examine: 

 • A categorical variable and a quantitative variable 
 • A categorical variable and a categorical variable 
 • A quantitative variable and a quantitative variable

An association is present if changes in one variable lead to systematic changes in the 
other. In this section, we use the words association and relationship interchangeably. In 
studies where we examine associations and relationships, we must have at least two 
variables. To study association and relationships, we need to identify the type of vari-
ables we have and understand which variable is the response variable and which is the 
explanatory variable for the posed investigative question6. A response variable is the 
variable with which comparisons are made. The explanatory variable is the variable 
that we hypothesize explains the outcome of the response variable. The response and 
the explanatory variable can be either categorical or quantitative. For example, if we 
consider the link between the number of cans of soda a person drinks a day and their 
glucose levels, we might be interested in answering the following investigative ques-
tion: Is there an association between peoples’ consumption of soda and their glucose 
levels? In this case, we might hypothesize that the more cans of soda one drinks, the 

6 Sometimes the choice of explanatory and response variables are arbitrary. For a detailed discussion about 
the choices of variables and their impact on analysis see https://openintro-ims.netlify.app/
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higher one’s glucose levels. Therefore, the number of cans of soda would be the explan-
atory variable and the glucose levels would be the response variable. Both variables are 
quantitative.  

Suppose we are interested in exploring how eating breakfast could be related to test 
performance. In such a scenario, we might set out to answer whether there is an 
association between breakfast eating and student test scores. Note that this investi-
gation could be rephrased as a comparison question using the following investigative 
question: How do the test scores of students who eat breakfast compare with those 
of students who do not eat breakfast? In this investigation, we will use the associa-
tion question. 

Whether or not one eats breakfast is a categorical variable, and the student’s test score 
is a quantitative variable. In this case, we might hypothesize that if one eats break-
fast, then one might score better on a test. Therefore, we would say that breakfast 
eating is the explanatory variable and the test score would be the response. Similarly, 
we could examine links between the grade levels of students and their restfulness at 
school in the morning. In this case, both grade level and restfulness categories are 
categorical variables. 

To examine whether values of one variable are more likely to occur with certain 
values of the other variable, we begin by making appropriate graphical displays that 
illustrate the likelihoods between the response and explanatory variables of interest. 

The next three investigations examine relationships for the aforementioned three 
different combinations of categorical and quantitative variables. As we work 
through the investigations, it is important to consider the most appropriate graphi-
cal displays for visualizing the relationships. Questions about links and relationships 
between variables come up all the time in real-life scenarios. For example, people 
may be interested in the associations of particular diets with weight loss or gain, the 
impact of a specific treatment on cancer remission, the relationship between wealth 
and happiness, the association between gender and annual salary, or the relation-
ship between education level and wealth. The list goes on. Because of this interest in 
drawing connections between variables, it is important to be able to examine links 
through data. In this unit, we will focus on noncausal relationships. In later units, we 
will discuss how associations between variables can be made causal (the explanatory 
variable somehow causes the outcome of the response variable).
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Investigation 1E.1: Questions and Test Scores

Goals of this investigation: Illustrate how to visualize the relationship between  

a categorical variable and a quantitative variable.

A district has invested time and money in a professional development opportunity. As 
part of the professional development, each teacher participant must set a goal regard-
ing a teaching strategy they plan on implementing in their classroom. Maria, one of 
the middle-school teachers in the district, is interested in understanding how students’ 
use of questioning can help them increase achievement. Her goal for the professional 
development opportunity is to teach her students how to use questioning to guide 
their mathematical problem solving. Every time she gives an assignment or a test, she 
provides a space in the margin labeled “Guiding Questions” where students can jot 
down the questions they ask themselves while solving the problems. Maria believes 
that the students who make use of the questioning strategy will be more successful in 
solving the problems. 

Her investigative question is: 

Is there an association between posing questions and achievement?  

How do students’ achievement for those who ask questions compare  

to students’ achievement for those who do not ask questions? 

To answer this question, Maria collected data from her class. She administered a 
Smarter Balanced Assessment Consortium (SBAC) Interim test and provided a side 
column for “Guiding Questions.” She instructed students to use the space for noting 
questions that they thought of when solving the problems. Once she administered 
the exam, she collected the work and then recorded each student’s score and whether 
they noted questions. The data are recorded in MariaTestData.csv. The data include 
several variables. 

Maria notes that the observational unit in her study is the student. She has two vari-
ables of interest: (1) whether the student wrote relevant questions on the SBAC 
Interim test and (2) the student SBAC Interim test score. Whether the student asked 
questions is a categorical variable with two categories (yes or no). The student test 
score is quantitative.  
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To start her analysis, Maria checks how many students used the questioning strat-
egy. Out of 35 students, she observes that 23 of them utilized the strategy she had 
been teaching, so approximately 66% of her students used noted questions during 
the exam.

Asked Questions Frequency Relative Frequency

No 12 0.34285714

Yes 23 0.65714286

Also, out of a possible 3000 points on the SBAC Interim test, the students’ test scores 
had a median score of 2691 and a mean score of 2698. The distribution of the test 
scores is pictured in the following dotplot:

 
The students scored very well on the test, with the lowest score being around 2500 out 
of the 3000 possible points. 

While the dotplot above displays the data for the students’ tests scores, it does not 
help answer Maria’s question about the association between posing questions and 
test scores. To examine the association between these variables, Maria needs to view 
the distribution of the test score broken down by whether the student noted ques-
tions or not. If she saw that the students who asked questions tended to score higher 
than those who did not, then she could say that there was an association between 
asking questions and the test score. If she saw that the scores of students who asked 
questions and those who did not ask questions had similar distributions, then she 
could say that there was not an association between asking questions and test scores. 

To examine this, Maria can create two different histograms: one histogram rep-
resenting the student test scores for those who asked questions, and another his-
togram representing the scores for those who did not ask questions. If there is an 
association between test performance and whether or not students asked questions, 
the histogram for the group who asked questions would be shifted further to the 
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right (higher values) than that of the non-asking-questions group (lower values). 
The opposite could also be true; asking questions could also be connected to lower 
test scores. To easily see comparisons, we draw the histograms with the same scale. 
Here are the two histograms:

 

Using techniques discussed in the previous unit, we can see that the center of the distribu-
tion for the non-asking-questions group is similar to that of the asking questions group, 
around 2700. There is more variability in scores present in the question-asking group 
than the non-question-asking group. Also, because there is a difference in the amount of 



62 | Statistics and Data Science For Teachers

students in each group (12 people in the no question group and 23 in the question group), 
it is appropriate to use relative frequency histograms. While the histograms help us draw 
comparisons and view the association, as discussed in the prior unit, boxplots provide good 
visuals to compare distributions. As mentioned in previous units, when analyzing data, one 
does not need to only use one type of graphical display, because different displays allow one 
to make various observations that may be helpful in drawing conclusions.

The boxplots illustrate that there is a large amount of overlap between the two groups’ 
test score values and little separation between the test score values. The data indicate 
that questioning does not seem related to achievement on this test in any way. The IQRs 
of the test scores are similar across both groups of students—those who used question-
ing and those who did not. The middle 50% of the distributions have ranges of similar 
scores for both groups, as is the case for the fourth quarter of the distributions which 
display ranges for the higher scores. The major differences between the two distribu-
tions occurs in the first quarter where those asking questions had a much wider range of 
lower scores than those not asking questions. We can see this because both boxes have 
similar heights. In addition, their median score values are also similar, as depicted in the 
boxplots. However, the whisker of the question group reaches lower than that of the 
no-question group, indicating a wider range of scores for the question askers.  

As a teacher, Maria could now use these analyses to inform her teaching. For example, it 
could be that the level of problems on the test were not the type that may be affected by 
questioning. Answering easy test questions correctly might not be affected by asking ques-
tions. On the other hand, questions that are complex, require multiple steps, and are geared 
toward problem solving could benefit from the strategy. This idea could prompt Maria to 
evaluate her tests to see whether the questions on the test varied in difficulty. In addition, 
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the students in Maria’s class scored very high on the Interim test, supporting the idea that 
the students found these problems easy. Maria could also undertake a more sophisticated 
study in which she examines the exam scores item by item. In such a study, it might be 
interesting for Maria to uncover which kinds of items benefited from using the question-
ing strategy.

INVESTIGATION SUMMARY: 
The main concepts developed in the questions and test scores investigation 

are: 

1. To visualize the association between a categorical variable and a quantitative 
variable, we can use the appropriate graphical displays for quantitative variables, 
broken down by the categories for the categorical variable. When given quanti-
tative variables, dotplots, histograms, and boxplots can be separated by catego-
ries to compare the data.

2. Boxplots can easily show the overlap and separation of the quantitative variable 
by category.

Follow-Up Questions
1. Is there an association between the amount of time it takes a person to complete 

a sudoku puzzle in the morning and their feeling of tiredness when they wake 
up? Use the SudokuSleep.csv data to carry out this investigation.

2. Is there an association between achievement on the Levels of Conceptual Under-
standing in Statistics (LOCUS) exam and whether or not the test taker ate breakfast 
the morning of the test? Use the LOCUS.csv data to carry out this investigation.

Investigation 1E.2: Movie Budgets and Revenue

Goals of this investigation: Illustrate how to visualize the  

association between two quantitative variables.

We often hear that big blockbuster movies cost a lot of money to make. But do these 
big-budget movies pay off? Specifically, we are interested in understanding the answer to 
the following investigative question:

Is there an association between a movie’s budget and the  

amount of money it makes worldwide?
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To investigate this question, a data set was constructed for the large movies made between 
1999 and 2018. A total of 5222 movies are included in the data set. The data can be found in 
Movies.csv7.

The unit of observation in these data is a movie. For each movie, two quantitative vari-
ables are collected: (1) the budget spent on the movie in millions and (2) the worldwide 
gross revenue for the movie in millions. We hypothesize that as the budget increases, the 
revenue increases. In this sense, the budget is the explanatory variable and the revenue is 
the response. Because the explanatory variable is quantitative, it defines changes in values 
of the explanatory variable to be compared with respect to changes in the response vari-
able. For example, as the budget increases, the revenue tends to increase as well. We can 
examine this change in association visually by looking at a scatterplot. A scatterplot is a 
two-dimensional dotplot. In previous units, we have used dotplots to visualize a single 
quantitative variable, but in this case, we have two quantitative variables. When we have 
two quantitative variables, the scatterplot is an appropriate data visualization.8 It shows 
the values of both the explanatory variable (represented on the x-axis) and the response 
variable (represented on the y-axis) simultaneously by placing a dot for each state at the 
point on the coordinate plane that represents the two values. Essentially, it uses the data 
points as an ordered pair and plots the point with respect to the x- and y-axis.

7  This data set was taken directly from StatCrunch’s available data sets.
8  A line graph may be used to visualize a quantitative variable over time, where time is considered a quanti-

tative variable as well. A line graph works well to visualize repeated measures of a quantitative variable over 
time (also referred to as time-series data). In general, however, when looking at two separate quantitative 
variables, scatterplots are an appropriate graphical display.
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The scatterplot reveals that there is an upward trend—the higher the budget for a movie, 
the higher the worldwide revenue for the movie. There are a few movies that stick out on 
the scatterplot. For example, looking at the data set in Movies.csv, we can find the movie 
that corresponds to certain points. For example, Avatar is the movie in the far-right 
corner of the scatterplot—it had the largest budget and also the largest revenue. Titanic, 
on the other hand, had a much smaller budget than Avatar, approximately half, yet was 
the next-highest-grossing movie worldwide. Pirates of the Caribbean had a budget the size 
of Avatar, but had a revenue of only approximately 1000. In scatterplots with this many 
points, it is often difficult to see an overall trend merely because there are so many points 
on the graph. However, in this case, the upward trend is obvious, showing that budgets 
and revenue are positively associated. 

To specify the association further, we can try to model it using an equation. As noted, the 
trend is upward sloping (positive association). The trend also appears to be somewhat 
linear. There is not a clear way to eyeball this; however, one possible way might be to 
draw an enclosure around the points and see that most of them fall in a narrow oval-like 
shape. In other words, the cloud of points follows a linear pattern. If it did not, we might 
see a U-shaped pattern (a cloud of points that looks like a parabola or quadratic), no pat-
tern at all (a cloud of points has no pattern and is just scattered everywhere), or maybe an 
exponential pattern (a cloud of points that looks like an exponential function increasing 
on one side and tending toward the x-axis on the other). Because our pattern appears 
somewhat linear, we will try to model it with a linear function. 

Quadratic Pattern, Random Pattern, Exponential Pattern

Specifying a linear model means writing an equation for a line that best summarizes the 
relationship between the variables. To write an equation of a line, we must specify two 
pieces of information: a slope and a y-intercept. To estimate what an appropriate slope 
and y-intercept might be for this scatterplot, we can informally fit a straight line for the 
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scatterplot in such a way that we believe best captures the trend (this can also be done 
with a piece of spaghetti or a string). 

There are many ways to informally draw a line of best fit. One such example is drawing 
a line that captures the trend by minimizing the overall distance of the points to the line. 
This is difficult, if not impossible, to do mentally and visually; however we can get close. 
When asked to place a line of best fit, students may connect the left-most and the right-
most points, or split the points in half to land above and below the line, or start the line 
from the origin (see Nagle, Casey, and Moore-Russo, 2017; Casey and Nagle, 2016; and 
Casey, 2016, for research on these types of student conceptions). We can use two of the 
points that landed close to the line to estimate the line’s slope, (300, 800) and (190, 600). 
Using these points and the slope formula ( change in y

change in x
) = 

y
2
 − y

1

x
2
 − x

1
 = 

Δy

Δx  , we estimate the slope 
to be around 200/110 = 1.8. If we continued to draw the line until it crossed the y-axis, we 
could estimate the y-intercept to be around 0. Therefore, we can model the movie reve-
nue as a function of the movie budget with this line: 

Worldwide Gross Revenue = 1.8*(Movie Budget) + 0

Where 1.8 is the slope and 0 is the y-intercept. Statisticians typically use the letter a to 
represent the y-intercept and the letter b to represent the slope. We can interpret the 
slope as the average predicted change in the response variable for a one-unit change in 
the explanatory variable. This is interpreted as that on average, as the movie budget increases by 

1 million (one unit of the explanatory variable), the worldwide revenue increases by 1.8 million. 

The words on average are used in the interpretation because the equation is not deter-
ministic. Instead, it is a predictive equation taking into account the variability of the data 
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around the line. In this sense, the slope is indicative of the association present between 
the explanatory and response variable. 

While the association found is predictive, it does not imply a causal relationship. In other 
words, we cannot state that the budget spending causes movie revenue to increase or 
decrease. While interpreting the slope and making predictive statements, it is also import-
ant to understand that we are not implying that the movie budget is the only variable that 
might explain movie revenue worldwide. 

INVESTIGATION SUMMARY: 
The main concepts developed in the movie budgets and revenue investi-

gation are: 

1. To visualize the association between two quantitative variables, we can use 
scatterplots.

2. From the scatterplot, we can visualize the type of association that might be pres-
ent between the variables and estimate an equation to model this relationship.

3. If the association between two quantitative variables looks linear, we can model 
it by finding the equation of a line that best represents the data set. 

4. The slope of the linear equation tells you how a one-unit change in the explana-
tory variable will predict the change in the response variable.

Follow-Up Questions
1. Is there an association between student SAT scores and student college GPA? 

Use GPADataSet_1000.csv to conduct this investigation

Investigation 1E.3: Body Image

Goals of this investigation: Illustrate how to visualize the association  
between two categorical variables.

Many Americans struggle with their weight. According to the Centers for Disease Control 
(CDC), more than a third of Americans are obese (www.cdc.gov/obesity/data/adult.
html). While many struggle with weight issues, Americans are also constantly inundated 
with images and pressures to obtain a perfect body. Women are pressured as the media 
inundate them with pictures of celebrities quickly recovering from having babies, and 

https://www.cdc.gov/obesity/data/adult.html
https://www.cdc.gov/obesity/data/adult.html
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of models on the cover of magazines. References to women’s appearances occur more 
frequently than discussions about accomplishments. Men also feel body image pressure 
(see for example, www.theatlantic.com/health/archive/2014/03/body-image-pressure 
-increasingly-affects-boys/283897/). They are increasingly worried about gaining 
more muscle and being thin. Considering these societal norms, a health class at a high 
school is interested in understanding if males and females have different feelings about 
their body image. They pose the following investigative question: 

Is there an association between gender and the way  

they feel about their weight?

To answer this question, the health class used an existing data set collected through a 
survey of 236 undergraduate students at a major university9. The survey asked students 
to report their gender and their feelings about their weight. The survey question that 
asked about weight was “Do you feel that you are underweight, about right, or over-
weight?” The data are presented in BodyImage.csv. A total of 229 students (out of the 236) 
answered the survey questions regarding their gender and their feelings about weight. 
The following contingency table shows the breakdown of students’ opinions about their 
weight by their gender. A two-way table (often also referred to as a contingency table) 
is a table that displays the distribution of one categorical variable in the columns and one 
categorical variable in the rows. Each cell of the contingency table displays the number of 
people that fall in the row and column category. 

About Right Overweight Underweight Total

Female 107 32 6 145

Male 56 15 13 84

Total 163 47 19 229

We could also include the joint relative frequencies for each category in the table. Of 
the total respondents, 47% are females who believe they are about the right weight; 14% 
are females who believe they are overweight; and only 3% are females who are under-
weight. The joint relative frequencies are also given for the males. We consider the male/
female variable the explanatory variable and the opinion on weight the response variable. 

The table also shows the marginal relative frequencies. These come from the total 
columns. We see that the marginal relative frequency of the about right category is 71% 

9 This data set is a real data set collected and then posted on StatCrunch for others to use.

http://www.theatlantic.com/health/archive/2014/03/body-image-pressure-increasingly-affects-boys/283897/)
http://www.theatlantic.com/health/archive/2014/03/body-image-pressure-increasingly-affects-boys/283897/)


Unit 1E: Exploring Relationships between Variables  | 69

of the total respondents; 21% chose the overweight category, and only 8% chose under-
weight. The marginal relative frequencies also reveal that we had 63% of females respond 
to the survey, as opposed to only 37% of males. 

About Right Overweight Underweight Total

Female 47% 14% 3% 63%

Male 24% 6% 6% 37%

Total 71% 21% 8% 100%

Because of this imbalance of totals between the genders, it is important to look at the rel-
ative frequencies in each of the weight categories within each gender. We thus examine 
the conditional relative frequencies. For example, the conditional relative frequency 
of about right given someone is female is 107/145 = 0.73, and the conditional relative fre-
quency of overweight given someone if female is 32/145 = 0.22.

Because we are interested in comparing how the different genders answer the weight 
question, we condition on gender. In other words, we find the relative frequencies within 
a gender. For example, looking solely at the female responses, we see that a majority of 
the 145 females believe they are just right, some believe they are overweight, and a few 
believe they are underweight. For the males, we see a similar pattern, but the number of 
males who believe they are overweight and underweight (15 and 13, respectively) are 
closer in value to each other than that of the females in those two categories (32 and 6, 
respectively). As mentioned, because there are not the same number of females and males 
surveyed, we should not compare frequencies in the categories across genders. Instead, 
we compare the conditional relative frequencies in each category, which would provide a 
better picture of the differences between the two genders’ feelings about weight. 

About Right Overweight Underweight Total

Female 107
(73.79%)

32
(22.07%)

6
(4.14%)

145
(100%)

Male 56
(66.67%)

15
(17.86%)

13
(15.48%)

84
(100%)

Total 163
(71.18%)

47
(20.52%)

19
(8.30%)

229
(100%)
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The conditional relative frequencies in parentheses show the row percentage for that par-
ticular category. For example, approximately 74% of female respondents and 67% of male 
respondents are in the about right category. Approximately 22% of female respondents 
and 18% of male respondents are in the overweight category. Looking at the conditional 
relative frequencies, we see a large difference between males and females in the under-
weight category. Of the males participating in this survey, approximately 15% believed 
they were underweight, compared with only 4% of females. 

In addition to the two-way table, we can visualize the different categories of weight feel-
ings across genders using pie charts and bar graphs. As discussed in prior units, these two 
graphs are best used to visualize categorical variables. In this case, because we have two 
categorical variables, we will be creating two pie charts or two bar graphs, one for males 
and one for females, and then we will compare the distribution of feelings about weight 
across the categories.

 

The pie charts show that the about right category dominates for both genders. It also 
shows that there is a difference in the underweight category for males and females. For 
the 229 people who answered the weight question, more males believe they are under-
weight than females. It is hard to make a visual comparison for the overweight category 
across the genders because they appear to be similar, so we will consider a bar graph in 
which the vertical axis represents the relative frequencies and thus could provide a clearer 
visualization for the comparison. As explained previously, we use the relative frequencies 
rather than the frequencies because the relative frequencies allow us to compare groups 
of different sizes. In this case, because there are more females included in the data set, it is 
important to use the relative frequency to compare the distributions.
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This bar graph depicts the distribution of weight feelings by gender and shows  
the differences in feelings about weight with possibly more clarity than the pie 
charts. This is because it is easier to compare the heights of each bar by color across 
the two categories.

In addition, we add a stacked bar graph, which makes it easier to compare the distri-
butions of how males and females answered the weight question. We see that the rela-
tive frequency of males who answered underweight (yellow) is larger than the relative 
frequency of the same category within females. We also see that the about right cate-
gory (blue) was relatively more popular within females than males. It appears that the 
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overweight relative frequency is about the same across the two genders. The stacked 
bar graph can help us see comparisons between the relative frequencies of many cate-
gories across the conditioning category (in this case, gender).

From the stacked bar graph, we see that there are differences between males and 
females in each category, but the relative frequency differences are slight for the about 
right category and the overweight category. However, the relative frequency differ-
ences are large for the underweight category. 

Overall, in this group of 229 college students surveyed, there does appear to be a poten-
tially weak association between gender and feelings about weight. This association 
is most evident in the difference between underweight feelings. More males tend to 
feel that they are underweight compared with females. If there had been no associa-
tion between gender and feelings about weight, we would have seen approximately the 
same distribution of feelings about weight for males and females. But because we see a 
difference in the underweight category, we can say that a potential overall association 
is present. However, because only 8% of the entire sample falls into the underweight 
category, someone might claim that there is no association because the distribution is 
similar for 92% of the sample. This is a valid conclusion as well. At this point, a more 
formal statistical test that detects whether the association is present or not would be in 
order. Such a test is called a chi-squared test for independence and is discussed in the 
context in inference. For this investigation, informal conclusions that are in some way 
supported by the data are welcomed.

INVESTIGATION SUMMARY: 
The main concepts developed in the body image and gender investigation are: 

1. To visualize the association between two categorical variables, we can use con-
tingency tables, pie charts, and bar graphs.

2. To examine the association between two categorical variables, we consider the 
relative percentages within each category we are comparing. This is because 
there might not be the same number of observational units sampled in each of 
the comparison categories.
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Follow-Up Questions
1. Is there an association between people’s belief about whether there is an 

appropriate emphasis in colleges and universities on college sports and peo-
ple’s beliefs about the kind of impact college sports have on academics at a 
college or university? To help answer this question, a survey of 2918 people 
was conducted. In the survey, people were asked whether they believed that 
colleges and universities put too much emphasis on sports, and they were 
asked whether they believed that having sports at a college or university had a 
negative impact on the academic experience. The survey responses are collect-
ed in ResponsestoCollegeSportsSurvey.csv.
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UNIT 2A:
Data in Our Daily Lives

Now more than ever, data are part of our daily lives. We collect data, we are inundated 
with data, we are shown data in myriad displays, and we are asked to interpret data 
to help us make decisions and form opinions every single day. Students are exposed to 
data in the form of text messages, pictures, sounds, and tweets through social media 
outlets and technological devices. There are also large amounts of data being collected 
daily and automatically, based on our behaviors. For example, data collected through 
an exercise-tracking device or purchase-history data from Amazon document daily 
routines in our life. Data may be produced by social networking (such as Twitter, Face-
book, or LinkedIn) or gaming devices and smartphones, or streamed from satellites 
used to understand climate change. All of these examples of data fall under the general 
heading of “Big Data.” The term originally referred to data sets of great size that had 
volume, variety, velocity, and veracity (Díaz, 2020); however, over time, it has expand-
ed to include data that merely have characteristics that can potentially lead to great size. 
Big Data may include images, locations, and dates. These data are rich and worthy of 
analysis. We will refer to all of these types of data as “nontraditional data.”

The focus of this unit is to show how nontraditional types of data can be collected, 
accessed, and analyzed in the elementary-, middle-, and high-school levels. If our goal 
as educators is to have students graduate high school statistically literate, we must 
incorporate curricula that address how to manage and analyze nontraditional data. 

In this unit, we will introduce several investigations that deal with different types of 
nontraditional data. The sophistication and complexity of the investigations increase 
as the unit moves from Levels A, to B, to C. The investigations in the unit are not 
meant to provide an exhaustive list of types of nontraditional data to be used in the 
school curriculum at the different levels, but instead are meant to provide examples 
of interesting and relevant ways that nontraditional data can be introduced and ana-
lyzed. In Unit 1, we discussed the importance of questioning in undertaking the sta-
tistical problem-solving process. Posing questions can lead to data exploration and 
uncovering patterns within data. When dealing with nontraditional data, the role of 
questioning becomes crucial to carrying out worthwhile analyses and drawing appro-
priate conclusions. 
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Case Study 3: Graphical Displays

Graphical displays of data may provide powerful visuals for uncovering patterns in data 
and can help shed light on characteristics of the data distribution. Visualizations are an 
integral part of data analysis today. Standard graphical displays include bar graphs, pie 
graphs, frequency tables, and contingency tables1 for representing the distribution of cat-
egorical variables; dotplots, scatterplots, histograms, and boxplots can represent the dis-
tribution of quantitative variables However, a graphical display can be any picture that 
provides visual information about important features of how the data are distributed. 
Typically, the K–12 grades focus on creating visuals for one or two variables at a time. 
However, with myriad data now available, thinking about multiple variables at a time and 
visualizing several variables within a data set in the same graphic is an important skill to 
develop. In fact, our interactions with data today are often through nontraditional graph-
ics and interactive visuals that show data on many variables simultaneously.

For example, word clouds are now found in many news articles to visually represent text 
data. The size (magnitude) of a word reflects the frequency with which the word was 
used; higher-frequency words are larger. Word clouds are relatively mainstream data 
visualizations that essentially were not used in the early 2000s and are not included in 
current standards. Would it be possible to represent the frequency of text words in a bar 
graph? What might be some advantages of using a word cloud over a bar graph for these 
types of data? Or of using a bar graph over a word cloud?

File:Wikipedia 15 - Twitter wordcloud.png
From Wikimedia Commons, the free media repository

No higher resolution available.
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1 Frequency tables and contingency tables are also referred to as tabular summaries of data.
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Another example of a graphic now used in popular media that is not taught in the cur-
rent school curriculum is a map. Consider this graphic from The New York Times 2. This 
choropleth map shows the coronavirus hot spots as of October 2, 2020. The color-coding 
shows a gradation of case severity in different areas of the United States. Would a boxplot 
be able to convey all of the information presented in this choropleth map? What are some 
advantages of using this map as a way to show patterns in the data? 

As specific investigative questions are posed, we can strategize about how to visualize 
the data in a way that provides a better answer to the investigative questions posed. 
Thinking about ways to visualize data on multiple variables is not a static and constrict-
ing process; instead, it can be quite creative. We want teachers and students to think 
“What would be the best picture to make sense of these data?” instead of automatically 
making a bar graph or histogram without considering the overall purpose. This helps 
students think about multiple variables at a time. Valuable discussions surrounding 
graphics and what students may wonder or notice about graphics are a focus of the col-
laboration between the American Statistical Association (ASA) and The New York Times 
called What’s Going On in This Graph? (www.nytimes.com/column/whats-going-on 
-in-this-graph). As part of the NYT’s Learning Network, visualizations used in articles 
in the NYT are discussed live with students. Statisticians from the ASA moderate each 

2 Graphic taken from www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html?action=click&mod-
ule=RelatedLinks&pgtype=Article. Used with permission.
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week. This collaboration offers models of how to discuss rich data visualizations actual-
ly shown in the news with K–12 students. These types of discussions push students and 
teachers to think about the features of the data (multiple dimensions of the data) and 
how these dimensions can be represented in a meaningful way. By thinking critically 
about data visualizations, students are forced to think about all the different dimensions 
they want to represent. 

Of course, there are good and not so good visualizations (see discussions about features of 
visualizations in Börner, Bueckle, and Ginda (2019) and King et. al (2021)). A good visu-
alization presents the data in a way that highlights specific distribution characteristics and 
clarifying patterns present in the data. For the word cloud, the size of the words reveals 
the frequency of the words in a text, immediately highlighting the pattern of important 
words being used. Just by a quick glance at the word cloud pictured previously, we see 
that information and knowledge were the most frequently used words. For the choropleth 
map, the regions where the coronavirus is pervasive are easily spotted.

Being effective at summarizing data in graphical forms requires a high level of multivari-
ate thinking, a skill that we aim to develop in current school-level standards and beyond. 
This unit will demonstrate how questioning can dictate the appropriateness of the type 
of display. It will focus on the dynamic and creative process of creating a data display that 
can capture the information in an innovative manner. 

CASE STUDY SUMMARY: 
The main concepts developed in the graphical displays case study are: 

1. Distributions of variables can be displayed in many ways in the news. 
2. Color and size can be used to display multiple variables in one graphic.
3. Interpreting graphical displays necessitates identifying all of the variables dis-

played in the graphic and how they are related to one another.

Next, we present another case study, followed by two investigations, that capture the cre-
ativity and subtleties that are important to master when learning to make sense of data in 
our daily lives. They also show how we can creatively represent the types of information 
we record while performing a data collection process. The case studies and investigations 
in this unit are meant to be introductory and thus are appropriate for early school levels, 
although exercises presented in this initial unit are also worthwhile for older students. 
The next sections, Units 2B and 2C, show how to extend the ideas to the secondary grades 
and illustrate more complex investigations of the same spirit. 
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A main purpose of Unit 2A is to understand that there are multiple ways to provide 
visual representations of data other than traditional displays. We encourage individu-
als to explore the creation of different visualizations for data that are not programmed 
into software. We promote this as a first step before individuals use dynamic statistical 
software. These skills require individuals to grapple with the variability in their data, 
examine the type of variables they have, understand the cases they have and what data 
are available, and represent multiple variables simultaneously. All of this forces individ-
uals to make sense of their data.

Case Study 4: Dear Data

In 2016, information designers Giorgia  
Lupi and Stefanie Posavec published 
the book Dear Data (www.dear-data.
com/theproject). This book chronicled  
a project they had carried out together 
for a year. 

Every week for one year, the two 
designers decided to choose a topic and 
collect data on that topic. At the end of 
the week, they would mail a postcard 
to each other that displayed their data 
in some type of graphical display that 
they drew by hand; on the back of the 
postcard, they included a key to their 
visualization. 

One of the designers lived in Europe 
and the other lived in the United States. 
Topics included a week of positive feel-
ings, a week of friends, a week of doors, and a week of drinks. Each designer could 
choose what data to collect and how to represent the data in any way she wanted. For 
example, for the week of doors, they tracked the doors that they passed through for the 
entire week and represented their data in the following ways: 

Used with permission .
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In Giorgia’s image, we immediately notice that she represented the door as a rectangular 
shape, whereas Stefanie represented each door with a line. Giorgia represented the dif-
ferent kinds of doors by drawing characteristics on them. For example, the door between 
her bedroom and living room was represented with the top half of the door being colored 
black. We can see, even with only a quick glance at her display, that this door was one that 
Giorgia passed through often during the week. Color was introduced to represent the 
location of the door. In Stefanie’s case, her data were visualized with specific types of lines 
representing each type of door. She also represented the doors in chronological order, 
with each row representing a day of the week. From this, we can immediately see that 
Stefanie went through many doors on the third day of the week. 

The choice of topic for the week can be rephrased as an investigative question. For exam-
ple, the data from the week of doors can help answer the following investigative question: 

In what way do we interact with doors in our daily lives?

After spending more than six hours drawing this hyper-detailed card, 
Giorgia texted Stefanie as she posted it: “You need to know that if 
this one doesn’t get to you, I won’t redraw it. You’ll see what I mean.”

Giorgia 

Unfortunately, while Giorgia’s postcard arrived, Stefanie’s postcard
didn’t, so she had to draw hers again (luckily is wasn’t as detailed, 
but it was still supremely annoying).

a week of doors Stefanie

Used with permission .
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Giorgia and Stefanie then posed data collection questions to guide their data collection, 
such as: 

 • What type of door am I passing through? 
 • What is a distinguishing feature of the door I am passing through? 
 • What is the location of the door I am passing through?

We can see that on their postcards, each of these questions dictated a characteristic that 
they captured about each door. We call these characteristics the variables of interest. 
Each door was a case in their data sets (a case may also be referred to as a unit, an individ-
ual, or an observation in statistics). And for each case, they collected three measurements 
dictated by the data collection questions and variables of interest. Their representations 
displayed each case, and for each case, they displayed, in different ways, the three variables. 

This required the authors to think about multiple variables simultaneously when they 
were designing the display for the three dimensions (variables) for each case. The require-
ment of drawing the data visualization by hand ensures that the authors could not take 
shortcuts in thinking about the meaning of their representation. Making the visualization 
by hand required deciding what things they wanted to be precise about and how that pre-
cision should be drawn.

This case study illustrates not only how data about our daily lives can be visualized in 
innovative and interesting ways, but also how data visualizations can reveal patterns in 
the data. We can see that both women interact with doors often in their daily lives. Their 
lives revolve around several locations, such as home, work, transportation, and outings. 
They are often crossing doors to go outside and inside, but more frequently the doors 
they cross are interior. This reveals that they might get to a certain place and stay there 
more than visiting many different places throughout the day. The data also reveal the reg-
ularity with which some doors are present in their lives, implying that there are specific 
spaces where they probably spend most of their time.

As the authors of Dear Data reflected on their project, they noted that data should be seen 
as a way to see the world around us that provides a starting point for discussions and not 
definitive answers to our questions. Giorgia discusses the project further in a TED Talk 
about how data humanizes us and reveals important stories about ourselves. The discus-
sion, titled “How can we find ourselves in data?,” can be found here: www.ted.com/talks/
giorgia_lupi_how_we_can_find_ourselves_in_data.
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CASE STUDY SUMMARY: 
The main concepts developed in the Dear Data case study are: 

1. Data can be displayed in many ways, not merely traditional displays that might 
be included in curriculum standards. 

2. Creativity is often important in finding the best ways to spot patterns in multi-
variate data.

3. Drawing out data displays by hand is important because it encourages one to 
grapple with ideas of precision, modeling, and appropriate representation of 
variables measured in each case.

Building on the Dear Data case study, the following investigation illustrates the  
process of carrying out one week of Dear Data between an adult and an elementary- 
school student.

Investigation 2A.1: Dear Data: My Week of Happiness

Goals of this investigation: Work with real data we come across in our  

daily lives, work with multidimensional data, make data visualizations,  

and use questioning to gain insight about data.

Over the course of a week, data were gathered to answer the following investigative 
question: 

What makes us happy?

A second grade child, Siena, and co-author Anna engaged in a seven-day data collection 
process where every day they recorded the instances, people, things, etc. that made them 
happy. The data collection questions were: 

 • What made you happy?
 • What time of day were you happy? 
 • Why were you happy? 

These questions were posed by Siena. They also recorded the day of the week. Therefore, 
they recorded a total of four variables (what, time, why, day of week). 
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To record their data throughout the day, Anna and Siena used 3x5 cards that could easily 
fit in their pockets, so they could pull them out when a new instance occurred and data 
needed to be recorded. The following represents the image of Siena’s card for Monday: 

At the end of the week, both Siena and Anna took their data collected throughout the 
week and constructed their visualization. 

Anna made the following visualization: 
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 In this visualization, the rays from the sun/moon in the middle of the paper repre-
sented the 24 hours in a day. The days were represented on each hour as a little line 
(seven lines per day). The moon side of the graph represented the p.m. hours and the 
sun side represented the a.m. hours. The key at the bottom illustrates the things and 
people that made Anna happy, which were represented by different shapes. Further 
classification of why these things made Anna happy were given by the smaller details 
added to each of the shapes. Therefore, each case of happiness was represented by a 
symbol on the graph. The different features of the symbols illustrated the two differ-
ent ‘happy’ variables, and their placement on the graph showed the time of day and 
the day of the week they occurred. 

While Anna’s visualization is interesting, Siena’s visualization is much more so. In par-
ticular, the process and reasoning the second grader went through to draw her final 
visual illustrated how she grappled with displaying multiple variables in the same 
visualization.

As a first step, Siena began by making her key. Her coding key included every single 
time she had recorded and every single thing that made her happy. She decided to 
represent each thing that made her happy with a symbol and then each time with a 
colored circle. Her idea was to place the colored circle around the symbol to represent 
when each symbol took place. She decided to make seven circles, each representing a 
clock for each day of the week, and then place these symbols around the circle. 
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Siena began placing her symbols on the Monday, Wednesday, and Thursday clocks. As 
she had planned, she drew the symbols and then circled them with the color representing 
the precise time in her key. This proved to be unsatisfactory to her, and she decided to 
start again with another display. When asked why her original visualization idea did not 
work, she stated: 

“I can’t put a.m. and p.m. on the clock. And I have too many things, so I don’t like it 
because I don’t have room. Plus, the clock already shows the time, so I don’t need to 
circle the things.”

In this quote, we hear Siena beginning to think about the multiple dimensions—so much 
so that she reasons that she cannot represent all of the dimensions she wants in the way 
she has drawn her graph. In addition, by stating that she has “too many things,” she is 
thinking about how she could possibly group some of her information. 
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As a final image, she drew 14 clocks and grouped them in pairs—gray-colored clocks rep-
resenting p.m. and yellow clocks representing a.m. She then placed her symbols around 
the clock at the appropriate times. She created new variables using the variable “What 
made Siena happy?” and created categories of items. For example, she grouped friends 
all into one category; in the prior representation, she had symbols for each friend that 
had made her happy. This illustrates Siena undertaking very sophisticated multivariate 
thinking that even many college students and other adults have difficulty understanding. 
Creating the representation by hand forced Siena to think through these important statis-
tical ideas, even though she has never been formally taught these concepts.

Siena’s thought process also showed her constantly grappling with how to best depict the 
data and capture all of the dimensions of her data precisely. She also grouped the informa-
tion in ways that she found appropriate.

As demonstrated in this investigation, Siena progressed through a problem-solving pro-
cess in order to come up with her final graph. In doing so, she questioned the data in ways 
that helped her understand successful ways to represent the variability in her data across 
multiple variables. While her questioning was implicit in this investigation, she implicitly 
answered the following:

 • What are the cases in the data set?
 • What are the variables in the data set?
 • What graphical features are available to use (e.g., color, shape, size, etc.)? 
 • What graphical features will be used to represent each variable? What patterns 

are easy to spot in the created graphic? What patterns are not easy to spot?
 • How can the graphic be adjusted to emphasize a different feature of the data or 

show more information?

These data collection and analysis questions are not meant to be an exhaustive list that a 
teacher may ask students when exploring how to create interesting graphical displays for 
multivariate data. On the other hand, these questions are meant to illustrate how ques-
tioning can be used to understand the data and push the analysis of the data in meaning-
ful ways. Answering such questions allows students and teachers to understand whether 
their visualizations are successful at uncovering the patterns in the data or not, thus 
making the graphic more effective or less effective.

This same investigation can be done with students of all levels. For example, here is a 
beautiful visual created by an undergraduate student. The image represents data collected 
over the course of five days on when the student checked the time. She noted when, 
where, why, and how she checked the time. 
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INVESTIGATION SUMMARY: 
The main concept developed in the Dear Data: My week of happiness investiga-

tion is:

Questioning can drive data collection and the process of making a data display. 
How will this information be best represented? How can we capture the multi-
dimensionality of real-life data on a piece of paper? Can the data be grouped? If 
so, what are appropriate groupings? Answering such questions as one is drawing 
a data display ensures that the visual will be successful at conveying the informa-
tion, variability, and patterns in the data.

As we through our daily lives, we take in information about the things and people 
around us. Sometimes we may formally collect data on these people or objects, record-
ing information about particular characteristics of each thing or person, while other 
times we have to make sense of data already collected for us. When data are collected 
for us and presented in a raw form, we have to train ourselves to try to find patterns in 
the data. This next investigation provides an already collected data set on 42 girls and 
34 boys in elementary school. The goal of the investigation is to visualize the data in 
some way in order to extract patterns from the data.
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Investigation 2A.2: Data Cards

Goals of this investigation: Work with multidimensional data, make data visualizations,  

and use questioning to gain insight about the data.

The entire fourth grade at Plinkey Elementary was interested in understanding the 
people in their class better. They constructed a survey by posing a series of data collec-
tion questions that each student answered, and then recorded the answers. The survey 
questions were: 

 • What do you typically eat for breakfast?
 • What month were you born in?
 • How old are you?
 • How many skips using a jump rope can you complete in 30 seconds?
 • How do you get to school every day?
 • What is your eye color?
 • What is your height?
 • What is the length of your right foot?

They recorded all of their personal information on a data card. A data card is a card that 
contains all of the values of the variables included in the data set about a particular case in 
the data set. In this case, each individual student is a case in the data set, and the variables 
are the following:

 • Breakfast food
 • Birth month
 • Age
 • Number of skips in 30 seconds
 • Mode of transportation to school
 • Eye color
 • Height
 • Length of right foot
 • Grade

Each of these variables matches one of the survey questions. 
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The students agreed on a format for their data cards. The format illustrates where each of 
the students will record the information about themselves on the card. Here is a picture 
of the format: 

Using this format, each child created their own data card by hand or on a computer 
using the template. Here is an example of Siena’s data card, written by hand:

There are 76 fourth grade students at Plinkey Elementary. Of these, 42 are girls and 34 are 
boys. Each student created their own data card. (The full set of data cards can be printed 
from Datacards.pdf.) 
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A series of investigative questions was then posed by the students: 
 • What month are students in fourth grade typically born?
 • What is a typical amount of skips we can expect fourth grade students  

to do in 30 seconds?
 • What do students typically have for breakfast? 
 • How do students typically get to school?
 • What color eyes do students in fourth grade typically have?

Note that all of these questions involve only one variable. In other words, students have 
to analyze the data according to one variable only. More complex questions that students 
could pose include multiple variables. For example: 

 • Do girls or boys typically eat different things for breakfast?
 • Does what you eat for breakfast influence how you get to school?
 • Are people who eat breakfast able to skip more than those who don’t?

Using the data cards, students can arrange them in graphical displays that will help answer 
their posed questions. For example, Janelle examined a subset of 18 students and posed 
the following question: 

In what month were the students in our class typically born?

By arranging the data cards into groups according to their birthdays, Janelle created the 
following data display to help answer her question: 
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In this display, Janelle represented the people in the group of data cards that she was using 
who were born in each month. This provided a summary of the data instead of showing 
individual cases or people who were in the class. This could be considered a pro or con 
for this display. On one hand, having the summary makes it easy to compare frequencies 
across months; on the other hand, the individual representation of each case is lost in this 
graph. Janelle organized the data around a circle, representing the cyclical nature of the 
months in a year. From this display, Janelle answered the investigative question as: 

“The months of October, November, and January appear to be the most common birth-
day months for kids in our class. Overall, fall and winter birthdays are more common 
than summer and spring birthdays.”

Chen, another student, chose a different question to investigate:

What are the typical eye colors of students in our class?

Chen visualized the class data in the following manner:

Although this graph is creative, it is difficult to determine which colors were more fre-
quent than others. By having the data represented as dots around a circle, it is difficult to 
make a direct comparison between categories of eye color if the number of students with 
each category of eye color is close. In this case, the H category, standing for “hazel eyes,” 
was the most common; however, without counting the dots, it is hard to see whether 
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green or blue were the same or whether one was larger than the other. Chen’s graph rep-
resented each individual on the graph and did not summarize the data in any way. While 
Chen also placed his categories around a circle, in this case, the circular representation is 
distracting because, unlike months in a year, there is nothing circular about eye color. Use 
of color to represent the variable eye color might have been a more effective way to convey 
the information. Having the eye colors be color-coded would make it much easier and 
quicker to understand the graph. In addition, the O category is not well defined on the 
graphic, leaving one to wonder what type of eye color this category might represent. (The 
O category stood for “other,” but it is unclear what such other colors might be).

Another interesting graph was developed by Shawn, who visualized the type of break-
fast students ate. Each leaf on the tree represented a person in the class, and the leaves 
were color-coded to illustrate the type of breakfast the students ate. A key was provided 
to show what the different colors represented. At first glance, we can see that cereal and 
pancakes were the most popular breakfast choices in the class. Similar to Chen’s graph, 
however, it is difficult to compare those two categories without counting the leaves.
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Students in the class could create graphs that involved more than one variable. For 
example, Shawn’s graph could be split into two trees, one for boys and one for girls. 
This display could help shed light on the answer to the following question:

Do girls or boys typically eat different things for breakfast?

Another interesting component of using the data cards to collect information and 
then summarize the data in a graphical display is that students need to determine how 
to put their data into a proper format. For example, when students were asked what 
they ate for breakfast, some might respond with “Cheerios” and others might respond 
with “cereal.” When making a visualization, a student or teacher must choose whether 
to cluster all the cereals into one group—such decisions could dramatically affect the 
final graphics.  

The initial task of making a data card highlights the fact that each individual in a class 
is a “case” in the data set. Because the students are required to collect multiple pieces 
of information on themselves, they begin to think about multiple variables at a time. 
Students can then be pushed to think about how to represent multiple variables in one 
graphical display. By first looking at single variables and providing visuals to help make 
sense of the data, students can then graduate toward making visuals to represent rela-
tionships between variables. This is the beginning of multivariate thinking at an early 
age through data visualization. Drawing visualizations by hand also forces students to 
think about every aspect of their cases and representations of those cases.

INVESTIGATION SUMMARY: 
The main concepts developed in the data cards investigation are: 

1. Many of the data representations we see in our daily lives are not those that 
we study in school. 

2. Questions can be posed that relate variables to one another. 
3. Creativity is often essential in creating a good visualization of nontradition-

al data.
4. Multiple variables can be represented in the same visualization.
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Follow-Up Questions
1. Create your own Dear Data investigation.
2. Create your own survey data cards that would be appropriate for the grade levels 

you teach. Pose an investigative question and use the data collected with the data 
cards to help create a visual to aid in answering the question.

Students can be encouraged to explore creative graphical visualizations and then pushed 
to think about how helpful the graph is for answering the posed question, as well as about 
the overall pros and cons of each display. This exercise of allowing students to push the 
boundaries of representation can prove to be difficult. As mentioned, many of the data 
representations we see in our daily lives are not those that we study in school (e.g., bar 
plots, histograms, etc.). Instead, often we see maps, word clouds, and many other inter-
esting and nontraditional data representations. The context dictates the effectiveness of 
the graph.
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UNIT 2B: 
Toward Data Science

Data do not necessarily come in a well-formatted spreadsheet or table. Instead, data 
might be presented in nontraditional forms such as text, pictures, sound bites, etc. and 
might be organized by cases (equivalent to the idea of a data card). Such nontraditional 
data might require unconventional graphical displays which provide visual displays on 
multiple variables. Nontraditional data might also require alternative types of analyses 
for summarizing the distributions. 

Unit 2B includes two investigations. In the first investigation, students explore the idea 
of using pictures as data to answer a posed statistical investigative question. Students 
interrogate the picture data to define multiple variables, record the variables into a 
table or spreadsheet form, and utilize interactive software to help visualize the data 
and answer the investigative question. In the second investigation, students examine a 
map pictured in What’s Going On in This Graph? (www.nytimes.com/column/whats 
-going-on-in-this-graph), create their own data set based on the interactive map, create 
their own graphical displays to answer specific investigative questions, and then draw 
appropriate conclusions.

Investigation 2B.1: Pictures as Data About Us3

During the COVID-19 pandemic, many students around the world experienced  
school from home in the spring and fall of 2020 and into 2021. A sixth grade class  
wondered about students’ workspaces at home and asked the following statistical inves-
tigative question: 

What do typical home workspaces look like for students in our class? 

To answer this statistical investigative question, students in the class decided to collect 
primary data (data collected by the researcher) by having everyone in their class take 

3  This investigation is written up in Bargagliotti, A., Arnold, P., and C. Franklin. 2021. GAISE II: Bringing data 
into classrooms. Mathematics Teacher: Learning and Teaching PK–12 114(6): 424–35. 
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pictures of their home workspaces and add them to a shared class folder. In addition, 
every student was asked to answer the following survey question: 

How does your workspace make you feel? 

Students were asked to answer the survey question using a maximum of 180 characters. 
Along with their picture, students submitted the comment about their picture in a text 
document.

The pictures from one small class of 20 students are included in the WorkStationPictures 
folder. 

Once the data were collected, students formulated further data collection questions to 
define and collect data on multiple variables from the photos. For example, the sixth 
grade students generated the following data collection questions about the pictures, 
which resulted in defining 11 variables:

1. What type of surface is the workspace?
2. How many screens are there at the workspace?
3. Is there a lamp at the workspace?
4. Are there colored pencils and pens at the workspace?
5. Are there books at the workspace? 
6. Are there binders at the workspace?
7. What types of computers/devices are there at the workspace?
8. How many computers/devices are there at the workspace?
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9. What is one word that describes the workspace?
10. What is the dominant color of the workspace?
11. How many objects are plugged in at the workspace?

A data card can be made from each printed picture to help students understand that the 
unit of observation (a case) is the workspace. Each student can place the answers to the 
11 data collection questions on the back of their picture, as illustrated in the following 
photos for one of the sixth grade students.

The class data can then be put into a spreadsheet using some type of interactive medium, 
such as Google Sheets (see the following image for the sixth class). Students at this point 
should recognize that one row in the spreadsheet represents one student workspace, 
namely, one case. Multiple variables are collected for each student workspace.
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To investigate the characteristics of the typical student workspace, students must consider 
all of the variables at once. Multivariate thinking is intuitive and natural for students; thus, 
students should be encouraged to develop analysis questions that will help guide their 
exploration. In the following table, the data collection questions and the defined variables 
are listed with potential analysis questions students could develop as a group. The ques-
tions guide students to discuss each variable and suggest strategies for analyzing the data.

Data Collection Question Variable Analysis Questions

1. What type of surface is 
the workspace?

Type of surface What is the most common surface?
What is the least common surface?
How many different types of surfaces are there?

2. How many screens are 
there at the work-
space?

Number of screens How many students have at least one screen?
What proportion of students have at least one screen?
What is the most common number of screens?
Are there any unusual responses?

3. Is there a lamp at the 
workspace? 

Has a lamp or not Is it more common to have a lamp or to not have a lamp?
What proportion of students have a lamp?

4. Are there colored 
pencils and pens at 
the workspace?

Has colored 
pencils and pens 
or not

How many students have colored pencils and pens?
What proportion of students have no colored pencils and 
pens?

5. Are there books at the 
workspace? 

Has books or not Is it more common to have books than to not have books?
Are there any unusual responses?

6. Are there binders at the 
workspace?

Has binders or not Is it more common to have binders or not?

7. What types of  
computers/devices 
are there at the work-
space?

Types of comput-
ers/devices

How many different types of computers/devices are there?
Which type of computer/device is most common?
What proportion of students have the most common  
computers/devices?
Which type of computer/device is least common?
Is there a lot of variation in the types of computers/devices 
that students have?

8. How many computers/
devices are there at 
the workspace?

Number of com-
puters/devices

What is the maximum number of computers/devices?
What is the minimum number of computers/devices?
What is the median number of computers/devices?
What is the mean number of computers/devices?
How much variation is there from the mean?

9. What is one word that 
describes the work-
space?

Description of the 
workspace (one 
word)

What word is most used to describe the workspaces?
Are there any unusual words used?
How many different descriptions are there?
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Data Collection Question Variable Analysis Questions

10. What is the dominant 
color of the workspace?

Dominant color of 
workspace

What is the most common dominant color of the workspaces?
What is the least common dominant color of the workspaces?
Are there any unusual dominant colors of workspaces?

11. How many objects 
are plugged in at the 
workspace?

Number of objects 
plugged in

What is the median number of items that are plugged in?
What is the mean number of items that are plugged in?
How much variation is there from the mean?

To address the analysis questions listed in the table, graphical displays can be developed 
that help students identify patterns and connections in these data. Such displays can be 
constructed by hand, organizing the pictures into bar graphs or dotplots, or using tech-
nology. For example, to help with analyzing the data collected for type of surface, students 
produced the following graphical display using their photos which shows that a large 
number of students worked at a desk: 
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The students used software to create graphical displays. From the following bar graphs, 
students could visualize that the majority of students in their class are working at a desk; 
five students are working at a table, and only two students are working at a cart. The 
modal category is a desk. Graphical displays can be made using free online data-analysis 
platforms such as CODAP (https://codap.concord.org):

These CODAP visuals display the distributions of two categorical variables and one 
quantitative variable. The dominant color and the one word to describe the work-
space are categorical variables. The number of items plugged in is a quantitative vari-
able. For the categorical variables, students can describe the modal categories and the 
percentage of workspaces falling within each category. White is the modal category 
for the dominant color, with 45% of students’ workspace being largely white; 10% 
were yellow, 10% pink, 10% green, and 25% blue. The quantitative variable shows 
that the mean number of items plugged in was 1.6 and that the median number of 
items plugged in was 1. For sixth grade students, the mean absolute deviation (MAD) 
provides the best measure of variability in the number of items plugged in compared 
to the mean number of items. For these data, the mean number of devices plugged in 
is 1.6 units and the actual number of units plugged in vary from 1.6, on average, by 
.84 units (almost 1 unit). 

As well as looking at single variables, students should be encouraged to consider 
multiple variables together to help answer the investigative question “What do typi-
cal home workspaces look like for students in our class?” For example, students could 
explore the association between the types of workspace surfaces and the types of 
computers/devices. This figure for the sixth grade students shows the association as 
a two-way table.
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Some example analysis questions students could ask of this graphical display are:
1. What is the most common combination?
2. Are there some combinations that do not exist?
3. Does all of one category from one variable match up with all of one category 

from the other variable?
4. What variability is there within a category?

 The two-way table shows that Chromebooks are most popular in both the desk and table 
surfaces. In fact, nine out of the 20 workspaces have Chromebooks at their desks, and five 
out of the 20 workspaces have Chromebooks at a table. At the tables, 100% of devices are 
Chromebooks. Three of the people who have Chromebooks also have either a Mac or a 
PC at their desk.

 Students could push their investigative questions further by looking at associations for 
more than two variables. Students can grapple with how to explore associations among 
more variables by representing multiple variables on the same graphic, first by hand. For 
example, the following display from the sixth grade class shows the association among 
dominant colors of a workspace, the number of computers/devices, the number of items 
plugged in, and the surface of a workspace.
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The workspace surfaces are sketches of a table, a desk, a cart, and a desk and cart. On 
each surface, a line represents the dominant color for a workspace. There are five 
colors: blue, green, yellow, pink, and white (white is shown as grey in drawing). The 
number of bars stemming off from the colored line (at the top) represents the number 
of items that are plugged in, and the number of squiggles (at the bottom) represents 
the number of computers/devices at the workspace. With this graphic, we can see that 
desks are the modal surface category, that the table surfaces have only one item plugged 
in on each, and that the cart surfaces do not have any computers/devices. This could be 
because a table might have an overhead light; thus, a student working on such a surface 
might need only their device plugged in, and a student at a cart may keep their devices 
in other places. To compare, consider the desk images: These images have several cases 
in which multiple things are plugged in. This is also true of the desk and cart. Also the 
dominant color of the desks is white, and pink appears only at the desk surfaces. The 
distribution of colors has the most variability for the desks. This could be because a 
desk is a personal space in which students may have the freedom to introduce what-
ever colors they prefer. Many other observations can be drawn from the graphic. Using 
hand drawings is important for students because it encourages them to think about 
different ways that multiple variables can be included in a multidimensional graphic. 

Another example of a graphic that represents three variables is given in the next draw-
ing. In this graphic, the sixth grade student represented the number of screens, the 
surface type, and the dominant color. In the bottom left cell—cart/zero screens—the 
student stacked the colors blue and green on top of each other. In the other cells, the 
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student distinguished the color into different bars. Students should recognize how 
stacking the colors in different bars makes for a better graphic because the distribu-
tion of colors can then be more easily compared within a cell. The relationship among 
these variables can also be explored using free online software, such as Tableau Public 
(https://public.tableau.com/en-us/s/). 

Students synthesize the analyses into a response for the statistical investigative question 
“What do typical home workspaces look like for students in our class?” The teacher 
could extend students’ thinking further by asking the following statistical investigative 
question: “What do typical home workspaces look like for students in our grade?” Can 
we use the data from our class to answer this investigative question? Students should 
note that in this case, the class would be a sample. If a different class’s pictures were 
selected, the images would vary. Students should recognize the limitations of any con-
clusions that they draw from these data to answer the investigative question for students 

in their grade. Students should be encouraged to contemplate what spaces might look 
like if they had a different sample of pictures from another class and how the variables 
they defined might vary depending on the pictures in the sample.

The statistical investigative question, data collection questions, and analysis ques-
tions outlined in the investigation are by no means an exhaustive list. Students should 
be encouraged to develop many more that utilize all of the other variables (e.g., the 
180-character description). To answer the statistical investigative question, students are 
encouraged to make visuals, because these can help provide evidence and support their 
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analyses, as well as use analysis questions to help make sense of their visuals, because 
this helps students think about and statistically reason with multiple variables at a time. 
In turn, the answers to the analysis questions asked will help provide an overall picture 
to answer the investigative question about describing the typical workspace. An exam-
ple answer to the investigative question for the sixth grade class,“What do typical home 
workspaces look like for students in our class?,” is:

Most of the students in our class are working at a desk. Including those who have a 

desk and cart, 65% of the students’ workspaces include a desk. The most common dom-

inant color of the workspaces is white (45%), followed by blue (25%). There is no single 

word that stands out as a descriptor of the workspace, but small, cluttered, neat, and 

simple had more votes than other words.

In terms of computers, devices, and screens, it is most common for students to have at 

least one screen at their workspace. Of the 18 students who have at least one screen, 14 

students have only one and four students have two screens. All the workspaces for the 

students in our class have at least one thing plugged in; the average number of things 

plugged in is 1.6. Because the number of items plugged in is a discrete quantitative vari-

able, it is important to note that the mean is not necessarily a whole number. Looking 

at the distribution of the variable shows that many students have one item plugged in, 

and that several have three items plugged in. Exactly five students have three or four 

items plugged in. Altogether, 14 students have Chromebooks, and two students have no 

computer or device in their workspace.

This serves merely as an example of a student write-up that includes only the variables 
mentioned in the previous graphical displays. However, students completing this inves-
tigation may choose a different combination of variables to answer the question (such as 
a book, colored pencils and pens, binders, type of workspace, and types of computers/
devices), and in fact should be encouraged to utilize all variables in the data set.

INVESTIGATION SUMMARY: 
The main concepts developed in the pictures as data about us investigation are: 

1. Multiple variables can be defined based on one picture. Data-generating questions 
can be asked of pictures, and multiple variables can be recorded for a single case. 

2. Visual representations can use color and shape to represent multiple variables in 
the same graphic. 

3. Questioning can guide not only the data generation process, but the analysis 
process as well. 
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Follow-Up Question
1. Do the same investigation using pictures of dinners, lunches, or the front door 

of a student’s home. 

Technology and computational thinking is an important part of moving students 
toward modern statistics and data science. In this investigation, students have used 
technology in many ways: They have taken a picture, uploaded this picture into a data 
repository (a shared folder), and used software to analyze the data. In addition, they 
have defined variables, created a spreadsheet, formed new variables from existing 
ones—all important concepts that require computational thinking. 

Investigation 2B.2: Climate Change in Our Community4

Climate change is one of the most important challenges of our time. Around the world, 
extreme weather presents unprecedented structural and economic challenges for 
humans. Students in a sixth grade class took part in a comprehensive investigation of 
climate change, reading opinions about climate change and trying to understand cli-
mate change in their own environment, writing an essay, debating, and looking at data. 
This investigation presents the data portion of a broader unit on climate change for 
students to participate in. Students in this sixth grade class specifically wondered how 
the personal environments in their community were being affected by climate change. 
The students posed the following investigative question: 

What are typical climate challenges that affect our community?  

To investigate this question, the sixth grade students used multiple data sources, includ-
ing an interactive map found in The New York Times, data they collected based on the 
map, and a photo-voice project (Herrick and Gralnik, in progress) that captured percep-
tions of climate change through their eyes. 

Thinking Like a Data Scientist:  

A Cross-Disciplinary Investigation on Climate Change

To begin with, students participated in a data talk as designed in the What’s Going On in 
This Graph? collaboration between the ASA and the NYT. Students were presented with 

4 This investigation was developed by Anna Gralnik, a fifth grade teacher at Aurelia Pennekamp Elementary 
School, in California. Bargagliotti, A., and A. Gralnik. Forthcoming 2021. Thinking like a data scientist: A 
cross-disciplinary investigation on climate change. The Statistics Teacher. 
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the following map and asked to discuss what they observed on the map. To guide their 
observations, the students were provided with a set of questions (those used in What’s 
Going On in This Graph?) to address when discussing issues related to climate change: 

 • What do you see on this graph?
 • What do you notice?
 • What do you wonder?
 • What impact does this have on you and your community?

Students can discuss these questions in breakout groups. Teachers should expect that 
when students are left to discuss, they will comment on all parts of the United States. 
Teachers can direct students to think about their notion of community on the macro 
level of the overall United States, and then hone in on the smaller, micro levels of their 
state and even their county. Teachers can encourage students to focus specifically on 
their own geographical area, given that the investigative question is specifically about 
their own community. Here are some examples of answers from these students:

The colors on the chart make 
sense to what they are repre-
senting. Yellow is like the Earth 
without water or like the desert; 
blue is like water, for rain; and 
red is like fire.

Our community is mostly really dry, 
which makes us prone to wildfires. 
Most of it is basically a desert and re-
ally hot. We have warm waters and lots 
of drought. We also have some places 
that have heavy rainfall.

Since the sea levels are 
rising, people who own 
property by the beach might 
get flooded, so they would be 
forced to move in-state

Six distinct colors are represented on the graphic. Each color represents a type of envi-
ronmental risk. The risk variable is categorical, with six categories. The categories are: 
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wildfires, sea level rise, extreme drought and water stress, extreme heat, extreme rain-
fall, and hurricanes. Students should notice that different areas of the United States are 
subject to different environmental risks. Large portions of the United States are subject 
to water stress. Extreme heat is focused mostly in the mid-South and lower rust belt. 
Extreme rainfall is in the Northeast, and hurricanes hit the Atlantic Coast and south-
eastern states. The Pacific West Coast has some extreme rainfall in the Northwest, as 
well as wildfires. 

After observing the static map, students were asked to interact with the same map. 
Students were provided with the link and asked to move their cursor to their state: 
www.nytimes.com/2020/10/15/learning/whats-going-on-in-this-graph-climate-
threats.html.

To guide their data investigation with the interactive map, the teacher posed the fol-
lowing analysis questions to help students begin exploring; they can be used as exam-
ples of questions to use with other students:

1. What does the color-coding represent? 

Students ideally should have noticed this already in the static map, in which the envi-
ronmental risk is a categorical variable with six categories. An example student answer 
might be:

Each section of color had a description that usually started  with extreme, which 

means that climate change is serious and dangerous.

Teachers should encourage a student to articulate that there are six colors, each repre-
senting a different type of risk. 

2. What does the darkness/lightness of the color represent? 

The gradation of the color represents how severe the risk is. The darker the color, the 
greater the risk. For example, although both Missouri and Tennessee can experience 
extreme heat as an environmental risk, Missouri has a higher risk.

3. Where did the data come from? What data were collected to make this 

map?

To understand the source, students should be guided to the original article presenting 
the map in the NYT: www.nytimes.com/interactive/2020/09/18/opinion/wildfire- 
hurricane-climate.html.

https://www.nytimes.com/2020/10/15/learning/whats-going-on-in-this-graph-climate-threats.html
https://www.nytimes.com/2020/10/15/learning/whats-going-on-in-this-graph-climate-threats.html
https://www.nytimes.com/interactive/2020/09/18/opinion/wildfire-hurricane-climate.html
https://www.nytimes.com/interactive/2020/09/18/opinion/wildfire-hurricane-climate.html
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The original article cites that the data came from Four Twenty-Seven (http://427mt.
com/), a company that focuses on assessing climate risk for financial markets. The data 
for the map were taken from one of the company’s reports: http://427mt.com/wp-con-
tent/uploads/2018/05/427-Muni-Risk-Paper-May-2018-1.pdf.

A student in this sixth grade class wondered the following: 

How do people collect and track the weather issues in different places related to the 

risks? 

Data have a source, and the source needs to be checked by students to make sure it’s 
reputable. Reputable sources have citations. They have a description of their data col-
lection process and describe any limitations of the data. Data collection and study design 
are advanced and extremely important parts of statistics. It is essential that students 
at an early age develop the practice of checking sources as a necessary process when 
drawing conclusions or making any assertions. This process should not be undervalued 
or skirted. It is a crucial part of the statistical investigative process that falls under the 
Collect Data component. 

4. What are you noticing now?

Now that students can interact with the map, they can notice that as their cursor hovers 
over the map, more detailed information is provided, including data at the county level. 
Students can also see that as they hover over a county, each county has been assigned a 
category for each of the risk types. This information allows students to make more spe-
cific observations about the data as it relates to individual counties. For example, here is 
a student observation made after the student engaged in an “inquiry center.” An inqui-
ry center is a center where students examine different readings, photographs, writing 
assignments, and discussion topics. The teacher in this sixth grade class set up four such 
centers. A student from one of the centers made the following observations:

I noticed that in our inquiry centers, we saw that in the photography inquiry center, 

there was a wildfire and Los Angeles had medium wildfire risk. In the writing 

inquiry center, we saw a drought, which had a very high risk where we live. This can 

show that climate change can affect more than one place or person. 

This student connected the information they found in two inquiry centers to the data 
they saw on the map. The map shows that each area can have multiple risks, and some-
times the risks may be connected (e.g., wildfires and drought).

http://427mt.com/
http://427mt.com/
http://427mt.com/wp-content/uploads/2018/05/427-Muni-Risk-Paper-May-2018-1.pdf
http://427mt.com/wp-content/uploads/2018/05/427-Muni-Risk-Paper-May-2018-1.pdf
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5. Explain what features of the interactive map help you to notice.

Here are additional observations made by students: 

The darker the color is, the more extreme the weather, but the lighter the color, the 

less extreme the weather will be. Also we noticed where the most crises are affecting 

other places, not just one location. 

6. What conclusion can you draw based on your discoveries?

Here in an example of a student’s conclusion:

Water stress or wildfires + rain make mudslides/landslides. So in CA, we have water 

stress, wildfires, and rain. When wildfires burn the plants or when water stress 

makes them dry, their roots can’t hold the soil together. Then when it rains, the water 

washes through the soil, making it watery and turning it to mud.

7. Continue exploring and noting your discoveries.

Students can begin to turn their observations into more complete and coherent thoughts. For 
example, one group of students decided to try to connect some of the different risks. By hover-
ing over a county on the map, students could see that for each of the risks, the county is given a 
rating of very high, high, medium, low, or no risk. These ratings are what determine the dark-
ness of the color. After looking at several counties, one group developed explicit relationships 
among the different risks. They said: 

 • Water stress + rain = landslide

 • Extreme heat + water stress = wildfire

 • Rising sea levels + rainfall = floods

Students should be encouraged to show evidence for these statements to support their 
conclusions.

8. What are you noticing about your own community?

Student answers will vary to this question. For example, a student shared: 

Weather will have an impact because if we don’t solve this problem, it will probably 

[have a bigger impact on] our community.

Because the investigative question focuses on the students’ local community, they 
should be encouraged to focus on their area of the map. In addition, students in the 
sixth grade class were able to connect the data displayed in the map to the prior inquiry 
centers. One student referred back to the inquiry center where they compared photos 
of the same place a few years apart and shared:. 
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www.santa-ana.org/pw/water-and-sewer/water-services/conservation/californias-drought

I noticed that the right side of the picture has very cool colors and the left side looks 

like it is very hot. So it shows that it is getting hotter. Also, I saw that it was very 

green and a nice big lake but in 2014, the lake is about three times smaller, and the 

surrounding greenery is no longer there or very dry and brown.

9. What are you noticing about other states in the United States?

Student answers will vary for this question. Here are three examples of what three 
different students said: 

 • On the map, Hawaii was all purple, which means the sea levels rise. Maybe in a 

couple of decades, the island might be under water.

 • Hawaii seems to be covered by rising sea levels, and since it is not too far from u 

s, it can affect us by pushing the waves over, putting us in a position of rising sea 

levels too.

 • We compared Arizona and California. We discussed whether Arizona or California 

had more wildfires. We decided that Arizona has more wildfires, but California has 

more severe cases of wildfires because California has more vegetation.

Once students finished interacting with the map, they were given time to draw con-
clusions and summarize their findings in the greater context of the investigation. 
As part of their class, as mentioned previously, students had read articles discussing 
climate change, read different opinion pieces about climate change. They also had 
to write an essay about their thoughts on climate issues relating all of the resources 
they studied. Unprompted, students created debates between climate-change activ-
ists, such as Greta Thunberg, and climate-change deniers, such as Naomi Seibt. They 
consolidated the conclusions they were making when talking through the answers to 
questions 1–9 in groups, thus focusing on communication with data (an important 
principle of data science and statistics).

https://www.santa-ana.org/pw/water-and-sewer/water-services/conservation/californias-drought
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It depends where you live. The specific place will determine what type of weather 

issues you’ll get. 

Next, students were then asked to dive deeper into climate change in their own com-
munity, not just their region, and create a data set that shows the different climate 
threats and to what degree the threat is around them. Each group of students was 
assigned 10 counties in California and asked to use the map to collect data on those 
counties. Here is an example spreadsheet created by one group of students: 

For each county, students recorded the severity of each of the risks. On their own, 
students then tallied the risks into a table and made additional graphical displays, 
such as the following bar and pie graphs, to help illustrate the risks in their local 
community. From the data collected on these counties, the students made a summary 
table of the data: 

Based on the summary table, they were able to create graphical displays to help them 
understand the severity of the risks in their counties.
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Based on this more local data, students were able to answer the posed investigative 
question about their local community. This final part of the investigation delves 
deeper into the data presented in the map beyond the color. 

Overall, the goal of this investigation is to use data to deepen understanding and 
gain more in-depth insight into the topic of climate change. By analyzing the map of 
the United States, students used multiple perspectives to interpret the data summa-
rized in the map. Students were scaffolded to reflect students’ prior knowledge and 
connection to new information presented on the map. Throughout the investigation, 
students developed questions that they wanted to investigate based on what they’d 
observed. They were no longer merely looking at the United States map; now they 
were investigating the consequences of climate change and asking questions. One 
student’s observation caused him to ask the following question: 

We wondered why there is one small spot of extreme rainfall in the middle of an 

extreme drought zone. We want to investigate how that could happen. 

This investigation meets curriculum standards in multiple pathways, and existing current 
curricula from other subjects can be used in collaboration with this investigation. It is 
cross-curricular and builds on multiple layers of knowledge, such as language of discipline 



| 115

(science), writing (reflections, information text), reading (theme, big ideas, categorizing 
and classifying information), and statistics and mathematics (patterns and data talks).

This investigation provides opportunities for students to make connections between old 
discoveries and new discoveries. They can formulate new theories about climate change, 
and they can defend those theories using evidence presented on the map. For the sixth 
grade class in Southern California, through different data, some students generated equa-
tions that hypothesized how climate changes occur. Other groups of students connected 
their findings to previously read articles (e.g., Newsela.com, “The Anti-Greta: YouTuber 
Campaigns Against ‘Climate alarmism’) that suggested strong opinions against climate 
change. Using the data on the map, they generated a rebuttal against that particular arti-
cle. Overall, students referred to the map as evidence for climate change support.

To culminate the investigation and to relate their data to their own experiences, the 
sixth grade students were asked to take five pictures of their environment. The pic-
tures were used as part of a photo-voice study conducted by Imogen Herrick and Anna 
Gralnik5. Some examples of student pictures were: 

5 Herrick, I., and A. Gralnik. Forthcoming. Through the eyes of a child: Empowering and understanding 
students’ climate literacy through pictures. 2021 APA Annual Meeting.

Using the pictures, students can be encouraged to 
carry out a similar investigation as the one in 2B.1. 
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INVESTIGATION SUMMARY: 
The main concepts developed in the climate change in our community 

investigation are: 

1. Understanding the context surrounding data is important to be able to draw 
conclusions from the data. 

2. Data can come and be summarized in many different ways. 
3. Data can support understanding of large, important issues. 
4. Results from data investigations need to be communicated with supporting 

evidence.

The investigations in this unit are elaborate and can take multiple days to carry out. 
Students should recognize the role of questioning in working with nontraditional data. 
Students should also recognize that multiple sources of data and different data sets can be 
used to answer one investigative question.

References for This Unit
Bargagliotti, A., and A. Gralnik. Forthcoming 2021. Thinking like a data scientist: A 

cross-disciplinary iInvestigation on climate change. The Statistics Teacher.  
Bargagliotti, A., Arnold, P., and C. Franklin. 2021. GAISE II: Bringing data into class-

rooms. Mathematics Teacher: Learning and Teaching PK–12 114(6): 424–35. 
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UNIT 2C:
Exploring Unconventional Data

Unit 2C continues to explore the use of unconventional data. The investigations 
become more sophisticated and complex, working toward data science. Data science 

is a relatively new term coined to describe statistics in the context of unconventional 
data. Data science requires thinking about multiple variables at a time (multivariate 
thinking), asking questions to help sift through larger and more complex data sets, 
using technology to help wrangle and manipulate data, and understanding appro-
priate conclusions and limitations to the data. The next several investigations are 
meant to be used at the high-school level; thus, they rely heavily on technology and 
students’ ability to reason statistically. 

Investigation 2C.1: The Trash Campaign6

Goals for this investigation: Develop skills for working with multidimensional  

data and work with apps to visualize data in different ways.

The Mobilize Project (www.mobilizingcs.org/) was a project funded by the National 
Science Foundation that designed a year-long data science curriculum titled “Introduction 
to Data Science Curriculum.” The goal was for secondary students to develop a blend of 
computational and statistical skills applied to a variety of data, including Big Data, and 
in particular data collected in participatory-sensing “campaigns.” Participatory sensing 
(PS) is a data collection paradigm designed to create communities centered on both col-
lecting and analyzing shared data (Burke et al., 2006). The Mobilize project used the 
term campaign to refer to the entire process of collecting data via participatory sensing, 
including choosing a topic, crafting survey questions, collecting data, and then analyzing 
and interpreting the data. Participatory-sensing data include many characteristics asso-
ciated with Big Data, and one goal of the curriculum is to prepare students to reason 
with data that do not easily fit into a random sampling paradigm. The Trash Campaign 
is an example of such a participatory-sensing campaign.

6  This investigation was created in conjunction with Rob Gould, principal investigator of the Mobilize 
Project, and Terri Johnson, a UCLA graduate student in the statistics department.
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We begin by creating context and reading brief news articles discussing the Puente Hills 
landfill, the primary landfill for Los Angeles County. Such articles can be found here: www.
npr.org/2014/02/22/280750148/closing-americas-largest-landfill-without-taking-out-
the-trash and here www.cnn.com/2012/04/26/us/la-trash-puente-landfill/index.html.

The news articles provide context for the investigation. The Los Angeles County 
Sanitation Districts (LACSD, www.lacsd.org) would like to reduce their burden on 
regional landfills, such as the Puente Hills landfill mentioned in the articles. The LACSD 
is planning a public awareness campaign and wants to ask the public to take specific steps 
that will help reduce the landfill burden. They would like you to make a recommendation, 
based on data collected through a participatory-sensing campaign, that would reduce the 
use of the regional landfills. This task aligns with the following investigative questions:

What steps can be taken to help reduce the landfill burden in Los Angeles? 

Students aim to make recommendations for the public awareness campaign supporting 
their ideas with evidence drawn from data. Data that could be utilized to address the inves-
tigative question were collected by the Trash Campaign, as well as by Los Angeles–area 
high-school biology students and their teachers. These students and teachers recorded 
data on their mobile devices every time they threw away a trash item over a five-day 
period. Because the trash data were collected through the Mobilize app based on a trig-
ger—throwing out a piece of trash—they are a participatory-sensing data set. Data col-
lected from multiple classrooms over a one-month period were combined. The students 
and teachers who collected the data signed waivers to allow for public use of the data, and 
the data were anonymized by removing names. The Mobilize app can be downloaded for 
free at www.mobilizingcs.org.

The data collected for the Trash Campaign in LACSD consist of approximately 2,600 
observations of 17 variables. The variables are categorical (which type of trash bin the 
item was placed in; the type of trash item; the activity that generated the trash item; 
where the trash item was discarded), quantitative (the number of recycling bins visible 
from the location where the item was discarded; the number of trash bins visible; the 
number of compost bins visible), image (photos of the trash items), date, time, location 
(as latitude and longitude), and text (an open-ended description of the trash item). 

The set of variables provided and the data collection scheme do not match those of a 
well-designed, random-sample-based study. Although the investigative question requires 
making conclusions beyond the sample at hand, the lack of a random sample means that 
generalizations to a larger population. In general, one would expect student reasoning 
and analysis to be guided by personal knowledge of recycling and landfills. For example, a 

https://www.npr.org/2014/02/22/280750148/closing-americas-largest-landfill-without-taking-out-the-trash
https://www.npr.org/2014/02/22/280750148/closing-americas-largest-landfill-without-taking-out-the-trash
https://www.npr.org/2014/02/22/280750148/closing-americas-largest-landfill-without-taking-out-the-trash
https://www.cnn.com/2012/04/26/us/la-trash-puente-landfill/index.html
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student might reason that if more recyclable goods were put in recycling bins, the burden 
on landfills would decrease. This might lead that student to compute the percentage of 
recyclable goods that are put into trash bins, compared with another student computing 
the number of trash bins visible. Although the PS data would be a poor estimate of this 
percentage for all people in the county, it could serve as evidence of whether a problem, 
such as the amount of waste Los Angeles produces, does or does not exist. 

The data are available in the Trash.csv file. The data can also be accessed through  
the Mobilize public dashboard at https://sandbox.mobilizingcs.org/#demo/. To access 
the data from this site, select the Trash Campaign and view it using the dashboard 
option in the drop-down menu.

The dashboard provides a limited number of “traditional” visualizations of data. 
However, it is helpful for exploring multivariate associations in rich data such as these. 
Below is an image of the dashboard with all of the possible visualizations displayed. 
Each display has the option of being displayed or not displayed by clicking on the icons 
at the top of the screen.

 

https://sandbox.mobilizingcs.org/#demo/
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Clicking on almost any part of the dashboard “subsets” the data based on the value clicked 
and immediately produces a new view of the subsetted data. For example, on the “What 
activity?” pie graph, we can click on drinking, which will make all of the graphs shift to 
include only the trash that was drinking related. The new graphs show only those trash 
items that were categorized as coming from a drinking activity by the students partaking 
in the data collection. You can reset the data by clicking reset. Clicking on a date in the 
bar graph titled Date will change the dashboard to display only data from that date, etc. 
Essentially, clicking on different parts of the pies will illustrate the conditional distribu-
tions of all of the variables. Before formally continuing with the investigation, we encour-
age exploration of the data through the dashboard in order to become familiar with the 
available variables and visualizations. To help focus this exploration, use the following 
questions as a guide: 

 • What activity generated the most trash overall? 
 • What activity generated the most trash at school? 
 • Are there differences in the number of observed recycling bins  

based on the time of day?

To answer the investigative question, it would be beneficial to brainstorm some 
potential ideas. First, one way the landfill burden could be reduced is if recyclable 
items were in fact recycled and never thrown in the trash. Similarly, we might be able 
to reduce the landfill burden if compostable items were composted and not thrown 
in the trash. Looking to the data, we need to determine whether there are a lot of 
recyclable and compostable items that are not recycled or composted. To find these 
data in the dashboard, we first click the recyclables portion of the “What type?” pie 
chart, which provides the following visuals:
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In the “What bin type?” pie graph, we see that many recyclable items are unfortunately 
thrown in the trash bin. By hovering over the slices of that graph, we can see that 566 
items that were recyclable actually ended up in the trash. Conditioning further on that 
group of 566 items, we can also see that when these items were thrown away, in more 
than 300 cases, there were no recycling bins in sight. From the word cloud, we can 
see that these items included things like bottles, paper, and wrappers. Based on these 
visualizations, one recommendation might be to increase the amount of recycling bins 
across the city so that recyclable items can be recycled. 

We can investigate this potential recommendation further by looking at the location and 
the activity where these items are being generated and thrown out. The “Where?” pie 
graph reveals that home and school are the two main locations where these items are 
being generated. Based on the “What activity?” pie chart, we see that eating/cooking is the 
category that generates the recyclable items that are ending up in the trash. Looking at 
the “Hour of Day” graphical display, we can see that the items are being largely generated 
in the morning, from 10 a.m. to 1 p.m. Because these are school hours, it appears that a 
potentially useful recommendation may be to increase the number of recycling bins in 
schools. If we make a condition on the location school by clicking on school in the “Where?” 
pie chart, we in fact see that many students reported that they did not see any recycling 
bins when they were throwing out these recyclable items. 

Clicking on the picture icon confirms that many of the items that students reported in 
these categories should have been recycled. The items most frequently seen in the follow-
ing image are cans, papers, and plastic bottles. 
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Considering the information gathered in this exploration, one answer to the investigative 
question would be to recommend that LACSD install more recycling bins in high schools. 

While this provides one potential answer to the investigative question, many other rec-
ommendations can be explored based on individual interest (e.g., compostable trash, 
behaviors of students depending on the time of day, etc.). Students should be encouraged 
to pursue their own ideas to investigate potential recommendations.

Follow-Up Question
1. Complete the trash investigation and offer two other potential recommendations 

for the LACSD. Write a letter to the LACSD presenting your recommendations 
using fewer than two pages.

Investigation 2C.2: Gapminder7

Goals for this investigation: Develop skills for working with multidimensional data. 

The Gapminder Foundation is a Swedish nonprofit 
foundation dedicated to the achievement of the United 
Nations’ (UN’s) Millennium Development Goals 
through studying statistics on social, economic, and 
environmental development. Hans Rosling, who passed 
away in 2017, served as an academic and the chairman 
of the Gapminder Foundation. Among many other 
accomplishments, he is well known for his TED Talks, 
in which he discussed global issues through data. The 
Gapminder website, www.gapminder.org/, provides 
access to videos, data, and web-based software through 
which you can view and interact with global data. If 
you click on the website’s “Resources” tab in the upper 
right corner of the screen (https://www.gapminder.
org/resources/), and then scroll down to the “Download 
the data” link under the “Data” icon (https://www.gap-
minder.org/data/) you can see the sources for the data 
that are compiled in Gapminder. The International 

7 This investigation is adapted from https://s3.amazonaws.com/fi-courses/tsdi/unit_1/CheungGapminderles-
son.pdf and www.gapminder.org/downloads/teachers-guide-200-years-that-changed-the-world/.

https://s3.amazonaws.com/fi-courses/tsdi/unit_1/CheungGapminderlesson.pdf
https://s3.amazonaws.com/fi-courses/tsdi/unit_1/CheungGapminderlesson.pdf
https://www.gapminder.org/downloads/teachers-guide-200-years-that-changed-the-world/
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Labour Organization, the World Bank, and the World Health Organization are among 
the sources. Although the data are collected and recorded in a conventional manner, the 
data are then compiled and are far more complex, with far more variables, than students 
and teachers are familiar with at the school level. It is for these reasons that this investiga-
tion is included in this unconventional data unit. This investigation serves as an excellent 
opportunity for students to think multidimensionally and work with graphical displays 
that illustrate multiple dimensions. 

At the turn of the 21st century, the UN put forth its Millennium Development Goals. 
Information about these objectives can be found on the UN’s website: www.un.org/
millenniumgoals/. These goals include the following worldwide issues that the United 
Nations has dedicated its efforts toward improving: 

1. Eradicate extreme poverty and hunger
2. Achieve universal primary education
3. Promote gender equality and empower women
4. Reduce child mortality
5. Improve maternal health
6. Combat HIV/AIDS, malaria, and other diseases
7. Ensure environmental sustainability
8. Global partnership for development

To help achieve these goals, nations, organizations, and companies across the globe spend 
large amounts of money each year to provide aid to regions and countries in need of 
improvement in each of these eight areas. For example, in 2015, the United Kingdom 
gave more than $19 billion in economic and military aid to other nations and Germany 
gave about $16 billion (see www.foreignassistance.gov/explore). 

Suppose that a nonprofit has hired you to consult on where it should focus its aid efforts. 
It has $1 million to donate. It has asked you to focus on one of the UN Millennium Goals 
and to make a pitch about which area of the world would be most in need of aid. To com-
plete this task, you will choose a UN goal to focus on and recommend the region or coun-
try needing support. This task aligns with the following investigative questions:8 

8 The investigation can be structured in the context of asking students to make a slide presentation of their find-
ings in order to pitch their recommendation to the nonprofit. A maximum number of slides could be allowed 
(e.g., three slides is sufficient). Slides should present the chosen goal and the recommended region/country for 
the aid, and be supported by visual displays.

http://www.un.org/millenniumgoals/
http://www.un.org/millenniumgoals/
https://www.foreignassistance.gov/explore
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What region or country do you recommend giving aid to in  

order to support the achievement of your chosen goal?  

What evidence is there to support your recommendation?

To provide an example of the way this investigation could be approached, we choose 
to work with the Millennium Goal of reducing child mortality. To begin, click on the 
Gapminder “Tools” tab, also on the “Resources” page. This tab will load the data set in 
a scatterplot that has bubbles of different colors and sizes instead of points. There are 
four dimensions pictured in this plot: The x-axis defaults to income per person, the y-axis 
defaults to life expectancy, the colors represent which region of the world the countries 
correspond to, and the size of the bubbles show the population size of the country. 
Each bubble on the scatterplot represents a country. A user can change three out of the 
four variables being represented in the visual by hovering over the names of the vari-
ables on the axes and using the drop-down menu to choose the variable to represent 
the size of the bubble. 

To address our chosen Millennium Goal, we first have to visualize the variables that 
pertain to it. To change the variables represented on the graph, click on the y-axis vari-
able life expectancy, and a drop-down menu of variables will appear that we can choose 
from. When doing this activity with students, teachers are encouraged to choose the 
variables for their students to explore beforehand. Because of the large number of vari-
ables available in the data set, students may get lost trying to decide what to look at. 
Therefore, if a teacher chooses a list of, for example, five initial variables for students to 
explore, students would have the opportunity to investigate the data set, which keeps 
the investigation student-led, but in a controlled and scaffolded manner. Depending on 
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the level of students, an instructor could allow students to choose their own variables 
to investigate. For example, the instructor could ask students to choose three variables 
to investigate that relate to their chosen Millennium Goal.

For our chosen goal of reducing child mortality, we begin by looking at the following 
variables: 

 • Child-mortality rate
 • Babies per woman
 • Income per person

We hypothesize that richer countries might have lower child-mortality rates. We 
also hypothesize that the more babies women have, the higher the child-mortality 
rate. Thus, we pose the following question to help guide our analyses:

To what extent do countries that are richer have lower child mortality rates?

Plotting income against child mortality, we see a downward linear trend, thus illustrating 
a negative association between income per capita and child-mortality rates. Playing the 
video shows how this relationship progresses through the years; we see that initially. In 
1800, all countries were closer in income, and they all had high child-mortality rates, 
at around 500 deaths per 1000 births. Toward the beginning of the 1900s, we can see 
the European countries (those in yellow) and the United States pulling away from the 
others in terms of wealth. The red dots of New Zealand and Australia are also in the 
mix of wealthy countries, as well as South Africa, which is represented by a blue dot. 
By 1950, almost all of the European countries, the United States, Australia, and New 
Zealand had drastically cut their child mortality rates to below 80 per 1000 births. In 
addition, these countries had also pulled ahead of the others in terms of income per 
capita. As we continue to 2018, the final year of data available for these two variables, 
we see that every country has reduced its child-mortality rates. However, for the most 
part, the countries with the lowest income and highest child-mortality rates are the 
blue countries, while Canada, Europe, and red countries such as Japan and South Korea 
have high income and low child-mortality rates. The United States trails a little behind, 
with high income and slightly higher child-mortality rates. These progressions suggest 
an association between a nation’s wealth and the number of child deaths in that nation. 
From these progressions, we can also observe that the region of the world most in need 
of support to reduce child mortality is Africa. 
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Income Versus Child-Mortality Rate

Because we have identified a region where the aid could be given, students might think 
the investigation is complete. However, it is unclear what factors may be contributing to 
Africa having a large child-mortality rate. To allocate aid properly, we need to investigate 
further the potential reasons Africa might be having difficulty, therefore giving the non-
profit organization more direction to where to designate its aid. We now try to further 
unpack potential reasons for high child-mortality rates by examining: 

To what extent does the number of babies a woman gives birth to affect child-mortality rates?

To look at this relationship, we change the x-axis variable to be the number of babies per 
woman. By looking at the 2015 scatterplot of this relationship, we see a positive trend, with 
African countries producing the highest number of children per woman. Recall our previ-
ous analysis regarding the high child-mortality rates of the blue countries. By adjusting the 
bubble size according to the income of the country instead of the population, we see that 
some of the blue countries that have high child-mortality rates and high numbers of babies 
per woman are wealthier than others. For example, Guinea, Gabon, Angola, and Nigeria 
have larger incomes than most of the other African nations. When we view the time video, 
we see that all countries started with a high number of babies per woman; however, as 
time progressed, other countries started having fewer children, while the African countries 
remained at the high birth rates of approximately five to seven children per woman. 

This may make us curious as to why African countries have not decreased the number of 
children per woman over time, so we explore the answer to the following question: 

To what extent is contraception available in countries around the world?  

How is access to contraception linked to the number of babies a woman has?
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Plotting contraception use against time, we see that for the most part, African nations have 
a very small percentage of people using contraception (approximately 20%). Although a 
few African countries do have higher rates of contraception, the majority of the coun-
tries have low rates. When plotting contraception rates against the number of babies per 
woman, we see a linear relationship between these two variables. As contraception rates 
decrease, the number of babies per woman increases.

All of these explorations suggest that a possible way to support African countries with 
their child-mortality rates is to reduce the number of babies a woman has. This can be 
done through increasing access to contraceptives. However, this plan does not appear 
to get at the root of the problem of why children in African countries are dying at 
higher rates than anywhere else. Is it simply that there are more children being born in 
Africa overall? Or can we dig deeper and try to recommend something more specific to 
explain why more deaths might be occurring?
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We can examine links between child mortality and two other variables: HIV rates and 
malaria rates. To examine these links, plot the child-mortality rate with the rate of HIV 
deaths for children to see that HIV in children is greatly affecting the African region. 
Although South Africa and Eswatini (formerly Swaziland) are two of the wealthiest 
African nations, they also have very high HIV rates. Looking at malaria rates, we also see 
that this is another large cause of death among children in Africa. Although the coun-
try of Guinea is wealthier than other African countries, it still has high rates of malaria. 
The Doctors Without Borders website (www.doctorswithoutborders.org/) discusses the 
hardship of malaria exposure in Africa. This organization states that although there is an 
effective treatment for malaria, called artemisinin-based combination therapy, there is a 
large shortage in the African region due to scarce resources. 

These findings suggest some targeted recommendations: 

 • Focus on child-mortality rates in the African region, because it is the largest need 
within the chosen Millennium Goal of reducing child mortality

 • Increase contraception availability and usage in African nations to reduce the 
number of babies per woman and the spread of HIV

 • Increase treatment and availability of treatment for malaria in African nations

Although we began this investigation by targeting three initial variables to examine, 
our investigation led us toward other variables, in a way uncovering a story as our curi-
osity led us to look at different variables. An investigation is not complete until the 
message one is trying to convey is well understood and, through exploration, one is 
able to offer concrete recommendations based on the data.  Hans Rosling’s Ted Talk 
(www.gapminder.org/videos/reducing-child-mortality-a-moral-and-environmental 
-imperative/) discusses child-mortality rates around the world and how the data on 
child mortality are collected. 

http://www.doctorswithoutborders.org/
http://www.gapminder.org/videos/reducing-child-mortality-a-moral-and-environmental-imperative/
http://www.gapminder.org/videos/reducing-child-mortality-a-moral-and-environmental-imperative/
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It is important to note that this investigation could go down many different paths. The 
connections students explore might be different from the ones described. While work-
ing with students on an investigation of this type, it might be tempting to quantify the 
number of connections students need to make or the number of variables students need 
to look at. However, in statistics, particularly when using data sets of this sort, the dif-
ferent pathways a student could take are numerous. Students should be encouraged to 
draw connections until their recommendations are concrete and supported by the data. 

Additionally, the Gapminder website has multiple videos on how teachers have used the 
site in their classrooms, accessible through /www.gapminder.org/for-teachers/.

Follow-Up Questions
1. Conduct the Gapminder investigation for each of the UN goals. 

Investigation 2C.3: Global Terrorism and Religion9

Goals for this investigation: Develop skills for working with multidimensional data  

and work with apps to visualize data in different ways.

Terrorism has always been a concern for modern society. In this investigation, we will 
use the Global Terrorism Database (GTD, www.start.umd.edu/gtd/) to examine the rela-
tionship among a particular region of the world, religion, and terrorism. The GTDis an 
open-source database that contains information about more than 150,000 terrorist inci-
dents occurring between 1970 and 2019. The data in the GTD are gathered from news 
reports, and the team managing the database tries to verify all the information it gathers 
through multiple news sources to make the database  as reliable as possible.

Using GTD, we aim to answer the following question: 

How do religion and region of the world affect the presence of terrorism?

We will access the GTD data through the Grinnell College RStudio server, managed  
by Dr. Shonda Kuiper, at http://shiny.grinnell.edu/. One can also go directly to https:// 
shiny.grinnell.edu/GlobalTerrorismMap/ and https://shiny.grinnell.edu/GlobalTerrorism 
Plots/ to access the data. Information about the data can be found at https://stat2labs 
.sites.grinnell.edu/GlobalTerrorism.html. The data are presented in the form of a world 

9 This investigation was created in conjunction with Shonda Kuiper. See https://stat2labs.sites.grinnell.edu for 
Kuiper’s extensive contributions to statistics and data science education. 

http://www.gapminder.org/for-teachers/
http://shiny.grinnell.edu/
https://shiny.grinnell.edu/GlobalTerrorismMap/
https://shiny.grinnell.edu/GlobalTerrorismMap/
https://shiny.grinnell.edu/GlobalTerrorismPlots/
https://shiny.grinnell.edu/GlobalTerrorismPlots/
https://stat2labs.sites.grinnell.edu/GlobalTerrorism.html
https://stat2labs.sites.grinnell.edu/GlobalTerrorism.html
https://stat2labs.sites.grinnell.edu/
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map. A map of this type can be useful for looking at patterns over time, picking out indi-
vidual incidents, and getting detailed information. You will see a map of countries, over-
laid by incident markers of different sizes. The size of each marker represents the severity 
of the attack (a weighted sum of the deaths and injuries caused by the incident). From the 
drop-down menu in the top corner, you can select the region of the world you are inter-
ested in looking at. The map will shift to that region, and you will see dots on the location 
of the terrorist attack. 

As a first pass at trying to understand the data, we select each of the different regions one 
by one and press play on the timeline to see the terrorist acts unfolding over time from 
1970 to 2014 in each region. Doing this reveals the following overall patterns: 

 • Terrorism has plagued the world throughout all years. There appear to be very 
few “quiet” years across the globe.

 • Terrorism seems to be more prominent in specific regions at different historical 
time periods:
 • The Middle East and North Africa had large amounts of terrorist attacks 

during the early 1980s and ’90s, with Israel, Palestine, and Algeria having 
most of the attacks in the region. 

 • North America has had a consistent amount of terrorist attacks through 
the years, with a few surges in the mid-to-late ’90s and in 2001. Overall, the 
attacks in North America have not been severe.

 • South Asia had some attacks in the ’90s and numerous attacks in the mid-to-
late 2000s. 

 • Sub-Saharan Africa has seen numerous attacks since the ’80s. There have 
been a large number of attacks in Nigeria, Sudan, Somalia, and Uganda, and 
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while other African countries have also had terrorist attacks, these countries 
appear to have had the most severe ones over the years.

 • Europe and Central Asia have had numerous attacks, particularly in the ’70s 
and ’80s, with a decrease in the 2000s.

 • Terrorist attacks in Latin America and the Carribean were prominent in the 
’80s and ’90s, particularly in Guatemala, Colombia, and Peru. In most coun-
tries in the region, the attacks had subsided by the 2000s, with the exception 
of Colombia, which had many attacks throughout the 2000s. 

 • East Asia and the Pacific have some specific countries that have seen many 
attacks throughout the years, and others that have had hardly any. The Phil-
ippines stand out as the country in the region with a consistent amount of 
attacks throughout this time period.

These observations summarize the overall patterns of terrorism across the differ-
ent regions of the world since 1970. Next, we examine the link to religion. Looking at 
external sources, such as https://ca.pbslearningmedia.org/resource/sj14-soc-religmap/
world-religions-map/, we find that the major world religions are: 

 • Christianity (32%),
 • Islam (23%),
 • Hinduism (15%),
 • Buddhism (7%),
 • Sikhism (.4%), and
 • Judaism (.3%).

Using the plots app, we can select variables to plot and color the plots using multiple 
variables. In addition, we can change the time increments displayed. By clicking the 
“Filters” tab, we can filter the data further by region, type of attack target, and the type 
of weapon that was used in the attack. Similar to investigation 2C.2, these plots can 
display multiple dimensions in one plot. On the top bar, we have three options for the 
type of plots: scatterplot, stacked-line plot, and bar chart. We can make use of all of 
these plots.

Have terrorist attacks been predominantly present in countries with specific religions? 
To look at the link among religion, region, and terrorism, we begin by using a stacked-
line plot. Select the following graphical display: 

 • Y-axis: incidents
 • By count
 • Color by: religion

https://ca.pbslearningmedia.org/resource/sj14-soc-religmap/world-religions-map/
https://ca.pbslearningmedia.org/resource/sj14-soc-religmap/world-religions-map/
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This shows the following plot. 

The plot illustrates that in the ’90s, terrorist incidents were happening in predomi-
nantly Catholic countries, whereas starting around 2007, they were happening mostly 
in Muslim countries. The plot also illustrates that since 2010, the number of terrorist 
attacks has spiked dramatically compared with historical data. 

Where are these attacks taking place? Have the attacks been concentrated in specific parts 
of the world? To investigate the location of where these attacks are taking place, we can 
“facet” the data by region and obtain the following plot: 

We see that the attacks carried out in predominantly Catholic countries in the ’90s were 
mostly happening in Latin America, and the attacks happening in predominantly Muslim 
countries in the 2000s were happening in the Middle East, North Africa, and South Asia. 



Unit 2C: Exploring Unconventional Data  | 133

To summarize our findings so far: 
 • Terrorist attacks have been consistent since 1970, with a large spike  

since 2010 
 • These attacks have been taking place in predominantly Catholic and  

Muslim countries 
 • The locations of the attacks are mostly in the Middle East, North Africa,  

South Asia, and Latin America

Are all countries within these regions experiencing terrorist attacks that are leading to 
fatalities, or are only specific countries susceptible? To investigate this question, we use 
the bar chart option. Select the following: 

 • Y-axis variable: fatalities
 • Type of range: below/above n fatalities
 • Value for n: 0
 • Year of incidents: try 2014

This display illustrates that although there were numerous attacks across the globe, in a large 
majority of the countries, the attacks led to no fatalities. In fact, in 2014, about two-thirds of 
the countries experienced no fatalities, while one-third did. The attacks that led to more 
than one fatality tended to be in Sub-Saharan Africa, the Middle East, and North Africa. 

Creating the same display, but colored by religion, we see that the attacks with more than 
one fatality were primarily in Muslim countries and in Catholic countries. 
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We can now ask ourselves if there are economic factors that might affect whether a region 
or country has terrorist activity. It can be hypothesized that underdeveloped or high-pov-
erty areas are more susceptible to terrorism. 

Are there economic factors that contribute to a region’s susceptibility to terrorist activity? 
To investigate this question, we turn to the scatterplot.

Keeping incidents on the y-axis, we can select the different economic variables for the 
x-axis. To see the patterns more clearly, we can select the logarithm of the variable option 
for both the y- and x-axis. We can color the graph by region. We start with gross domes-
tic product (GDP). 
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We can see that although there are regional discrepancies in GDP (the green dots for 
Africa have lower GDP overall than, for example, the blue dots representing North 
America), regardless of GDP, all regions have had attacks. There does not seem to be 
any overall pattern relating GDP with the number of incidents. Similarly, when we 
examine the relationship between the other variables, such as life expectancy, unem-
ployment rate, etc., and number of incidents, we see no relationship. This suggests that 
there are no clear economic factors that affect the number of terrorist incidents. 

Our results also show that terrorism is not random and sporadic. Instead, the distribu-
tion of terrorism attacks has been clustered around areas that have religious and ethnic 
conflicts. While countries that are predominantly Catholic and Muslim have seen the 
most terrorist attacks, this does not hold true across all of the years analyzed. Catholic 
countries were experiencing terrorism in the ’80s and ’90s, while Muslim countries 
were experiencing terrorism in the 2000s and 2010s. 

We created multiple graphs to identify patterns with terrorism and the major religion 
of a country. With this method, we found that some religions do correlate with greater 
levels of terrorism, particularly Catholicism and Islam. However, this connection applies 
only for certain time periods (Catholicism during the ’80s and ’90s and Islam during the 
2000s and 2010s). However, we cannot claim a causal relationship between terrorism and 
religion. In fact, each year the GTD shows that there are numerous Muslim and Catholic 
countries with no recorded terrorism incidents.

These data were difficult to navigate for multiple reasons. First, the nature of the ques-
tions are open-ended, and there are no clear-cut answers. The investigation is exploratory, 
and the connections we are trying to make are not causal but are merely exploratory. 
Second, in this investigation we are navigating several interactive apps—the map as well 
as the three different graphical plots. Each one of these tools facilitates the analysis of 
different portions of the data. To answer the investigative questions, all of these parts 
need to be put together. Furthermore, while the data and the apps are revealing, there 
are limitations. For example, the countries are coded according to the most prominent 
religion present in the country; however, many countries, such as the United States, have 
a mixture of religions represented within it. Thus, we have no way to control for preva-
lence of religion in this investigation. Also, while many terrorist groups use religion as a 
motivation, we cannot say that many religious people are terrorists. 



136 | Statistics and Data Science For Teachers

This investigation illustrates the difficulties with navigating complex data sets. Using 
interactive apps helps visualize multivariate relationships among variables; however, 
it requires practice and time. Because of the large amount of information that can be 
accessed, approaching the analysis through questioning is particularly important and 
guides the investigative process. 

Follow-Up Questions
1. Using the apps, answer the following investigative questions: 

 • What are the predominant types of attacks? Are the methods of attack sophis-
ticated (e.g., hijackings and facility attacks) or not (e.g., assault and bombings)?

 • What type of weaponry is used? 
 • Have these patterns stayed consistent over time or have there been shifts in 

terrorism methods over time?
 • What countries have seen the most fatalities from terrorist attacks in the 

2000s and in the 1990s?
 • Who have been the targets of the terrorist attacks?

Case Study 5: Fitbit Tracking

In January 2018, several news sources reported on the unintended consequence of 
Strava Labs publishing a heat map of people going jogging around the world, using 
their Fitbit devices as trackers. Doing this inadvertently alerted people worldwide of 
where secret military bases were located. These Fitbit data are a type of unconventional 
data that are ever changing and growing. The visualization of the data as a heat map 
is also an increasingly common way to illustrate these data. Several articles were pub-
lished on the topic, including the following: 

 • The Washington Post: 
www.washingtonpost.com/world/a-map-showing-the-users-of-fitness 
-devices-lets-the-world-see-where-us-soldiers-are-and-what-they-are-d 
oing/2018/01/28/86915662-0441-11e8-aa61-f3391373867e_story.html?utm 
_term=.37ed891587f8

 • Wired: 
www.wired.com/story/strava-heat-map-military-bases-fitness-trackers-privacy/

 • BBC News: 
www.bbc.com/news/technology-42853072

 • The Guardian: 
www.theguardian.com/world/2018/jan/28/fitness-tracking-app-gives-away 
-location-of-secret-us-army-bases

https://www.washingtonpost.com/world/a-map-showing-the-users-of-fitness-devices-lets-the-world-see-where-us-soldiers-are-and-what-they-are-doing/2018/01/28/86915662-0441-11e8-aa61-f3391373867e_story.html?utm_term=.37ed891587f8
https://www.washingtonpost.com/world/a-map-showing-the-users-of-fitness-devices-lets-the-world-see-where-us-soldiers-are-and-what-they-are-doing/2018/01/28/86915662-0441-11e8-aa61-f3391373867e_story.html?utm_term=.37ed891587f8
https://www.washingtonpost.com/world/a-map-showing-the-users-of-fitness-devices-lets-the-world-see-where-us-soldiers-are-and-what-they-are-doing/2018/01/28/86915662-0441-11e8-aa61-f3391373867e_story.html?utm_term=.37ed891587f8
https://www.washingtonpost.com/world/a-map-showing-the-users-of-fitness-devices-lets-the-world-see-where-us-soldiers-are-and-what-they-are-doing/2018/01/28/86915662-0441-11e8-aa61-f3391373867e_story.html?utm_term=.37ed891587f8
https://www.wired.com/story/strava-heat-map-military-bases-fitness-trackers-privacy/
https://www.bbc.com/news/technology-42853072
https://www.theguardian.com/world/2018/jan/28/fitness-tracking-app-gives-away-location-of-secret-us-army-bases
https://www.theguardian.com/world/2018/jan/28/fitness-tracking-app-gives-away-location-of-secret-us-army-bases
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The articles all highlight the fact that unconventional data are in the news. While the 
discussion at the beginning of this unit emphasized how these types of unconventional 
data do not set us up for inference, here is a case where people were able to infer loca-
tions from unconventional data. Although this is not a classic statistical-inference ques-
tion, data of these types do offer large amounts of information. The articles note that 
the data offer a large amount of information to anyone who wants to attack or ambush 
U.S. troops in or around the bases, as well as patterns of activity inside the bases. The 
Post article states, “Many people wear their fitness trackers all day to measure their total 
step counts, and soldiers appear to be no exception, meaning the maps reveal far more 
than just their exercise habits.” From a data perspective, this means that data are not only 
collecting location, but they are also collecting time of day, amount of activity, and other 
related pieces of information. Such fitness devices also showed routes in and out of bases, 
time of activities in and out of bases, and soldiers’ overall daily patterns. 

This case study demonstrates how unconventional data now play a role in our daily lives. 
Along with this come issues of privacy, sensitivity, and implications. These are discus-
sions that should be forthcoming in our statistics curriculum as we fine-tune our under-
standing of how these types of data factor into society. One thing is certainly clear: Our 
students have access to, contribute to, and are well aware of these types of data, so the 
time for engagement with these data in a classroom setting is upon us.
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UNIT 3A:
Probability Introduction

Probability topics are sometimes taught in conjunction with or before statistics topics 
in the school curriculum. For example, several curriculum standards place probability 
and statistics into one strand (e.g., the NCTM’s Principles and Standards for School 
Mathematics, Common Core State Standards). While probability and statistics are 
related, it is often difficult to see the explicit connection between the two subjects. 
Typically, probability is introduced using counting rules. These rules allow us to count 
the number of various outcomes, such as the number of possible sandwich combina-
tions at a restaurant, the number of different gender combinations of babies a woman 
could give birth to, or the number of possible pathways from point A to point B on a 
city map. These counting exercises are typically followed by teaching probability rules, 
such as finding the probability of rolling a die and getting a six or flipping a coin and 
getting heads. But how is the study of these rules related to statistics? 

The answer is randomness. Statistics aims to draw conclusions in the presence of vari-
ability in data. Introducing randomness as part of data collection allows us to use prob-
ability to develop models for describing the resulting random variation present in data. 

As noted on page 11 in GAISE II, “Probability is also used in statistics through ran-
domization—random sampling and random assignment. Samples can be collected at 
random and experiments can be designed by randomly assigning individuals to differ-
ent treatments. Randomization minimizes bias in selections and assignments. It also 
leads to random chance in outcomes that can be described with probability models.” 
(The idea of random selection and random assignment will be developed in Unit 3B.) 

Probability gives us the tools to model and quantify that randomness. A probability is 

a quantity between zero and one that defines how likely something is. For cer-
tain types of random processes (such as tossing a coin or rolling a die), the probability 
represents the “long-run” relative frequency of an event. In other cases, such as sport-
ing events, the probability represents the likelihood that something will occur. 
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The idea of randomness begins with the notion that an individual outcome from a repeat-
able random process cannot be predicted with certainty. However, if the random process 
is repeated a large number of times, a predictable pattern in the relative frequency of out-
comes generated from this process will emerge. Probability is the branch of mathematics 
that seeks models for describing this long-run predictable pattern. These models provide 
order to the seeming disorder present in the outcomes from the individual trials.

A random process is a process for which an individual outcome is unpredictable. A 
simple example of a random process could be flipping a coin. When you flip a coin, you 
do not know with certainty what the outcome of that flip is going to be; it could be heads 
up, or it could be tails up. In fact, you do not know exactly what proportion of heads will 
be seen in the first 10 flips. However, assuming a fair coin (each side of the coin has the 
same chance of occurring), we do know that if we flip a coin a large number of times, 
in the long run about half of the flips should land heads up and about half should land 
tails up. In the short run, outcomes are unpredictable, but in the long run, there are pat-
terns. While the individual outcome (e.g., one coin flip) or short-term sequences of out-
comes (e.g., 10 coin flips) of a random process are highly variable, making predictability 
difficult, if the process is 
repeated a large number 
of times, then predictable 
patterns will emerge in the 
outcomes. The graph illus-
trates the long-run relative 
frequency of heads for a 
fair coin and how it tends 
to stabilize around half as 
the number of coin flips 
increases toward 1000. 

If the coin is assumed to be fair, then a mathematical model for the random process of 
tossing a coin is: 

probability of heads = P(heads) = 1
2

Note that this model does not imply that after an even number of trials, a head will 
occur exactly half of the time. For instance, after two tosses, you are not guaranteed to 
have exactly one head, and after 100 tosses, you are not guaranteed to have exactly 50 
heads. See, for example, the following table, where after 1000 tosses, there were not 
exactly 500 heads. 
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Now suppose you are not willing to assume a coin is fair. How could you go about esti-
mating a probability model for this situation? To estimate the probability, you could toss 
the coin a large number of times and use the long-run relative frequency of heads to esti-
mate the probability of heads. For example, the following table illustrates the outcomes: 

Trial Number Outcome Cumulative Frequency of Heads Relative Frequency of Heads

1 T 0 0/1 = 0.0

2 H 1 1/2 = 0.5

... ... ...

1000 H 475 475/1000 = 0.475

After 1000 tosses of the coin, a head has occurred 475 times. Based on these 1000 tosses, 
we would estimate the probability of a head to be 0.475. This strategy for estimating and 
assigning probabilities is called empirical probability. Based on these empirical proba-
bilities in the table, the coin does not appear to be fair.

The empirical probability of an outcome can be defined as the long-run relative fre-
quency of the outcome. The law of large numbers states that when performing the 
same random process a large number of times, the average result obtained in the large 
number of trials is close to the actual probability. In probability, this indicates that as a 
random process is repeated over and over again, the relative frequency of an outcome 
stabilizes toward the probability of that outcome, as illustrated in the graph showing that 
the probability of heads is half.

Probability is about determining models that describe the long-term predictable patterns 
from a random process. Consider the coin flip example. The probability of getting heads 
can be described as the proportion of heads seen in the long run. In other words, to deter-
mine the proportion of heads, we could continually flip a coin, count the number of heads 
after each flip, and calculate the total number of times the coin showed heads divided by 
the total number of coin flips completed, as seen in the previous table and graph. This 
process is called a simulation. In this case, we actually performed the random process 
of flipping a coin a large number of times. After 1000 repetitions (trials), a head occurred 
in 475 of the trials. Thus, based on these results, we would estimate the probability of a 
head occurring in any trial as 0.475. This would give the relative frequency of the number 
of heads and give us an empirical probability. (Note that sometimes when one is able to 
carry out the random process explicitly, this is referred to as an experiment. The term 
simulation is reserved for mimicking a random process that cannot actually be carried 
out. See, for example, the following blueberry pancakes investigation). Carrying out this 
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coin-flipping process, we would notice that as the number of flips increases, if the coin 
is fair, the proportion of heads (the relative frequency of heads) stabilizes around half. 
Therefore, we say that the probability of getting heads when flipping a coin is half. 

A simulation is a model of a real-world phenomenon that mimics the possible outcomes 
of a random process. If the actual random process can be performed physically, then it 
is often simply referred to as an experiment. For the purpose of this book, we will refer 
to all random processes that are carried out multiple times as simulations, regardless of 
whether the process can be physically done or whether the process has to be mimicked in 
some way.  

Well-designed simulations are those that match well the real-world scenario, whereas 
substandard simulations are those that are not modeling the real-world process. For 
example, consider the real-world scenario of selecting a national committee of four math-
ematics teachers from a group of 20 NCTM members who have already volunteered 
their time. To have a diverse committee, we want to ensure that the northern, western, 
eastern, and southern regions of the United States are represented. We want to know the 
probability of selecting the committee and obtaining representation from each of the dif-
ferent regions of the United States. Our investigative question is, “What is the probabil-
ity of selecting a committee with one representative from each region?” To simulate the 
committee selection, we would have to know the regions of the 20 NCTM members and 
then select four of those members at random. To simulate this selection process, we could 
use a deck of cards and represent each of the 20 NCTM members and their region with 
a separate card suit. For example, clubs could represent the South, heats could represent 
the East, diamonds the North, and Spades the West. Each card would represent a teacher. 
Then, we could mix the 20 cards and select four at random. This would model the random 
selection of a committee. If we repeatedly shuffle the cards and deal four cards, then we 
can simulate the long-term behavior of the random process of selecting four teachers at 
random from the original group of 20 teachers. The key in this simulation would be set-
ting up the deck of 20 cards in such a way that one card would represent one of the 20 
people (a substandard simulation might instead merely take any 20 cards and then select 
four, not recognizing that the four suits correspond to each of the four regions).  

Becoming proficient in designing simulations is not an easy task. Students and teachers 
alike need extensive practice modeling real-world scenarios using different manipulatives 
and eventually software. The essence of probability modeling (or probabilistic modeling) 
is to determine a model that describes the long-run proportion of times an outcome should 
occur if the random process generating the outcome is repeated a large number of times. 
For example, when we think of tossing a fair die, we say that the probability of rolling a 
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two is one-sixth. We are able to arrive at the mathematical model P(tossing a 2) = 1/ 
because of the assumption that the die is fair. In the context of probabilistic modeling, this 
means that if we were to roll a die over and over again many times, we would expect, on 
average, to see that about one-sixth of the time, a two would be rolled. It does not tell us 
that if you roll a die six times, you will get a two one time within the six rolls.  

Throughout this unit, we investigate the ideas of probability through the empirical 
lens. We will distinguish between the theoretical probability and empirical proba-

bility of an outcome, and show how they are related. Theoretical probability is the 
actual probability of an outcome (also often referred to as the mathematical proba-

bility). We demonstrate these ideas in all the investigations in this unit.

The following three units will make the connection between probability and statistics 
explicit. Namely, we show how to (1) use probability in statistics to model data from 
situations in real life, (2) use empirical probabilities to estimate actual probabilities and 
make statistical predictions about what is likely and what would be unusual, and (3) use 
probability to characterize the behavior of sampling distributions to help us draw infer-
ences. Unit 3A focuses on (1) and introduces the ideas of (2). Sampling distributions (3) 
will be discussed in Units 3B and 3C.

Investigation 3A.1: Which Deck of Cards Is Fair?

Goals of this investigation: Define the probability of a random event  

as the long-run frequency, the law of large numbers, and experimental  

probabilities converging on mathematical probabilities.

A teacher in a class prepares two decks of 26 cards each. 
Deck one has 13 black cards and 13 red cards. deck two 
has 19 black cards and seven red cards. A class of 30 stu-
dents is asked to determine which deck is fair, where fair 
is defined as having the same number of red cards as black 
cards. The students decide that each student in the class 
will draw 10 times with replacement from each deck and 
record their outcomes in a table. The catch is that they 
can look at only one randomly selected card at a time. 

The investigative question posed to the class is:
Which deck is fair?

Deck 1 Deck 2
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Tables from three different students are:

Student A Student B Student C

Deck 1 Deck 2 Deck 1 Deck 2 Deck 1 Deck 2

R B R R B R

R B B B B B

B B B B R B

B B B R R R

R B B B R R

B B B B R B

B R B B B B

B B B B R B

B R B B R R

B B B B R B

Each student is asked to look at their outcomes and predict which one of the decks 
was the fair deck. The notion of “fair” in this case is interpreted as the chance of get-
ting a black card being the same as the chance of getting a red card. However, as seen 
in Student A’s table, in both cases red appeared fewer times than black (deck one had 
three red and deck two had two red draws). Does this indicate that both of the decks 
are not fair? 

The random process is the act of drawing a card. Each draw has a random outcome: get-
ting a black card or getting a red card. We denote that the probability of obtaining a red 
card corresponds to the relative frequency of getting a red card in the long run if the cards 
were replaced and shuffled in the deck after each draw. In other words, this probability 
can be expressed as a limit as the number of draws goes to infinity of the relative fre-
quency. For teachers familiar with limit notation, the following expression illustrates the 
probability as a limit: 

n → ∞    
P(red card) = lim  

# of red cards drawn

n

, where n is the number of draws. 

For n = 10, we can compute the relative frequencies of red cards obtained for each of the 
three students and each of the two decks as: 

Student A Student B Student C

Deck 1 3/10 4/10 6/10

Deck 2 2/10 4/10 3/10
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To get a better sense of what happens to the relative frequency of red cards when the 
number of draws increases, the three students can combine all of their draws into one 
data set. This would provide the following relative frequencies: 

Pooled Data

Deck 1 13/30
Deck 2 9/30

Looking at these relative frequencies, we see that a red card was drawn from deck one 
approximately 43% of the time, and a red card was drawn 30% of the time from deck two. 
The relative frequencies fluctuate from student to student. The idea of probability is to 
see where these relative frequencies stabilize as the number of draws increases. In other 
words, the probability is the value of the relative frequency as the number of draws goes 
to infinity (as noted in the limit equation). Combining the data from all 30 students each 
drawing 10 cards from each of the two decks (300 total draws from each deck), the stu-
dents obtain the following relative frequency of red cards: 

Pooled Data

Deck 1 153/300
Deck 2 81/300

From these pooled data, the students see that deck one is close to having red being drawn 
almost half of the time  81 

300  = 0.51(                  ). We can predict that as more and more draws are 
included in the data, the relative frequency of red draws for deck one will settle at half, 
which is considered the fair outcome, since each of the possible random outcomes (red or 
black) have an equal probability of occurring. In the case of deck two, we see that when 
more draws are included, the relative frequency of red stabilizes at around 0.27 (     ) 81 

300
. 

If we assume that fair is 50–50, our results show that it is plausible that deck one is fair. 
Deck two has an empirical probability from our simulated data of 27%. This probability 
seems unusual if 50–-50 is fair. Therefore, the class simulation indicates that it is not as 
plausible that deck two is a fair deck. For deck two, the likelihood of pulling a red versus a 
black card was not equally likely based on our simulated results. 

While the pooled data table provides the relative frequencies (empirical probability), it 
does not represent the probability as previously defined. To determine probability, the 
students would have to draw infinitely many more times from each of the two decks.



148 | Statistics and Data Science For Teachers

INVESTIGATION SUMMARY: 
The main concepts developed in the fair coin investigation are: 

1. The probability of a random event is the long-run chance of that event happen-
ing after repeating a random process a large number of times.

2. Probability describes predictable patterns of random events. 
3. Probability quantifies which events are plausible and unusual. 
4. Random events can have outcomes that are equally likely or not.

The main point of this initial investigation is for students and teachers to understand the 
definition of probability and realize how we can use empirical probabilities to estimate 
and make statistical predictions about what is plausible and unusual. We want students 
and teachers to understand that in the short run, an outcome might not be predictable, 
but it may be in the long run. Drawing cards (playing cards or index cards), flipping coins, 
and tossing dice are traditional ways to approach teaching the definition of probability, 
because these manipulatives are typically easily available in classrooms. Statistics estimates 
the likelihood outcomes based on how plausible they are to have occurred given the data 
we see. The probability of an outcome is the long-run relative frequency of occurrence 
of that outcome. Through simulation, this interpretation provides statisticians with one 
method to make these estimations. The next several investigations solidify the idea of 
probability as the long-run relative frequency of outcomes from a random process and 
further develop the idea of using simulation to estimate probabilities.

Investigation 3A.2: Blueberry Pancakes

Goals of this investigation: Reinforce the idea of the long-run frequency as the definition of 

probability, and simulate a random process using tools.

The Blueberry Pancake House (BPH) prides itself on having at least one blueberry in all the 
pancakes they serve. In fact, their slogan is “No Pancake Should Be Without a Blueberry!” 
BPH wants to be able to advertise that its customers are likely to have blueberry pancakes 
that actually contain blueberries. BPH would like to give a predictive percentage of how 
often that should happen. The restaurant knows that the number of blueberries in a pan-
cake is going to vary. The variability will fluctuate from batch to batch. Instead of cooking 
thousands of batches, BPH asks a sixth-grade class to model this situation and develop a 
percentage that the restaurant could use in its advertising. BPH tells the class that for an 
order of six pancakes, it uses 20 blueberries. The restaurant also mentions that it uses a 
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robot arm to make the orders. The robot arm dips a specific-size ladle into a large bowl of 
batter to make each pancake.

The investigative question posed to the class is: 

What is the probability of obtaining a pancake with no blueberries  

in an order of six pancakes?

To answer this question, the class is asked to brainstorm ideas of how to use materials 
that are available in the classroom to model the random process of the robot arm making 
six pancakes with 20 blueberries. One student has the following idea: 

1. Distribute a sheet that has six circles drawn and labeled 1, 2, 3, 4, 5, and 6, repre-
senting the six pancakes.

2. Provide a die to each student in the class.

Assume the robot arm reaches into the batter bowl and fills its ladle with a randomly 
selected portion of the batter. To perform a simulation, the class must make basic assump-
tions about the random process. The random process the class will model corresponds to 
assigning each of the 20 blueberries to one of the six pancakes. This process can be mod-
eled in the following way:

1. Consider the first blueberry. Roll the die, and whichever value comes up, place 
the blueberry in the circle that is labeled with that number. 

2. Repeat this process for each blueberry (20 times).

In this manner, each student in the class will simulate the random process of assigning the 
20 blueberries to pancakes as it would happen at BPH. For example, one student obtained 
the following picture, where each star represents a blueberry and how it was assigned:

In this picture, all of the pancakes received at least two blueberries. For each simulated 
batch of pancakes, we can record the number of blueberries that pancake will have.

From this, we can determine whether or not every pancake has no blueberries or at least 
one blueberry. It is important to draw attention to the fact that the simulation entails 
assigning all 20 blueberries, not just one individual blueberry. The class is repeating the 
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process of cooking an order of six pancakes with the 20 blueberries in them. For each 
simulated batch of six pancakes, the students can then record whether each pancake in 
fact received no blueberries or at least one blueberry in the batch. Thirty such simulation 
results are recorded in the following table. 

Student Whether or Not Simulation Resulted in a 
No-Blueberry Pancake

Student Whether or Not Simulation Resulted in a 
No-Blueberry Pancake

1 All had at least one blueberry 16 No-blueberry pancake occurred

2 All had at least one blueberry 17 All had at least one blueberry

3 All had at least one blueberry 18 All had at least one blueberry

4 All had at least one blueberry 19 All had at least one blueberry

5 All had at least one blueberry 20 All had at least one blueberry

6 All had at least one blueberry 21 All had at least one blueberry

7 All had at least one blueberry 22 All had at least one blueberry

8 All had at least one blueberry 23 All had at least one blueberry

9 All had at least one blueberry 24 All had at least one blueberry

10 All had at least one blueberry 25 No-blueberry pancake occurred

11 All had at least one blueberry 26 All had at least one blueberry

12 All had at least one blueberry 27 All had at least one blueberry

13 All had at least one blueberry 28 All had at least one blueberry

14 All had at least one blueberry 29 All had at least one blueberry

15 All had at least one blueberry 30 All had at least one blueberry

From this, we see that the relative frequency of obtaining a no-blueberry pancake for 
this class was 2/30 = 0.067. In only two cases did the simulation lead to a student getting 
a pancake order with at least one pancake with no blueberries. On the other hand, the 
class data might reveal that getting at least one pancake with three of the 20 blueberries 
on it is very likely, or that having one blueberry on a pancake is less likely. 

We refer to the .067 as the empirical probability of obtaining at least one pancake with-
out any blueberries. It is not the theoretical probability; to find that, the robot arm 
would have to make the six pancakes with 20 blueberries infinitely many times. It is 
impossible to carry out the actual experiment using the robotic arm making pancakes; 
thus, it is necessary to use a simulation. The empirical probability offers a glimpse at the 
long-term behavior of the relative frequency of getting zero blueberries in a pancake. 
In the long run, the empirical probability will converge on the theoretical probability. 
This is the essence of the law of large numbers, which will be further discussed in the 
next investigation. 
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Based on the students’ study, BPH estimates that more than 93% of pancake orders of 
six pancakes will have at least one blueberry on each pancake!  

In this investigation, we used dice to simulate the blueberries being randomly assigned 
to the different pancakes. The random process of assigning blueberries to pancakes  
is modeled using the die. The probability of the event of no blueberries in a pancake is 
given as the long-run outcome of this process. The probability in this example could 
also have been computed mathematically. Statistics focuses on drawing conclusions in 
the presence of randomness, and probability shows which events are likely and which 
are unlikely1.

INVESTIGATION SUMMARY: 
The main concepts developed in the blueberry pancakes investigation are: 

1. Probability shows which events are plausible and which events are unusual. 
2. A simulation is an action that mimics the random process using physical tools 

(e.g., dice) or software. A simulation is a model of the random process.
3. When a probability is not known, a simulation can be used to help see the long-

run patterns.
4. The empirical probability of an outcome of a random process is the relative 

frequency of that outcome for a fixed number of trials.
5. The theoretical probability of an outcome of a random process is the relative 

frequency of that outcome as the number of trials tends to infinity.
6. Probability can be used to model real-world scenarios.

The prior two investigations have introduced one interpretation of a probability as the 
long-run relative frequency of a random event. In addition, in both investigations, we 
used simple simulations (one using coins and one using dice) to help us estimate the 
probability. Our simulations modeled the random processes and helped us see the over-
all patterns. The next three investigations emphasize the usefulness of using simula-
tions to model random processes, and they introduce statistical software that can be 
used to repeat the simulation many times. We provide three examples to illustrate a 
variety of activities one could do to solidify these concepts; however, all three of the 
following activities have similar goals, so if one were short on time, one could cover 
only one of these activities.

1 Note that an outcome is one individual result that can occur after performing the random process. An event 
consists of a collection of outcomes.
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Investigation 3A.3: The Last Banana

Goals of this investigation: Use simulations to estimate probability and make decisions.

Two people are on a deserted island, and they decide to play a game to see who will get the 
last banana to eat. They have two dice with them on the island. The game is as follows: 

Both players roll their die. If a one, two, three, or four is the highest number rolled, then 
player A wins. If instead a five or a six is the highest number rolled, then player B wins2. 

The investigative question is: 

Which player would you rather be?

To begin the game, one can have students predict which player they want to be. Students 
will tend to choose player A because they believe there are more chances to win with four 
possible outcomes on one die that are winners (one, two, three, and four), versus only 
two possible outcomes that are winners for player B (five and six). Students might believe 
they have two-thirds probability of winning being player A and one-third probability of 
winning being player B.

2  Images taken as snapshots from the TED Ed talk presenting this problem. Retrieved here www.youtube.com/
watch?v=Kgudt4PXs28. 

https://www.youtube.com/watch?v=Kgudt4PXs28
https://www.youtube.com/watch?v=Kgudt4PXs28
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Students can be paired together to play the game and asked to simulate the game 20 times. 
An example of tallies for 20 simulated games is: 

Highest Value Rolled Winner Highest Value Rolled Winner

4 A 6 B

4 A 6 B

6 B 5 B

5 B 5 B

6 B 2 A

6 B 1 A

5 B 6 B

4 A 1 A

1 A 1 A

1 A 6 B

In this example, the game was simulated 20 times. We see that A wins nine times out of 
the 20 and B wins 11 times out of the 20. Are students convinced by this evidence that 
they want to be player B? 

To further explore, we can begin by combining all the data collected from each set of 
partners and computing the proportion of times A won in the class and the proportion 
of times B won in the class; with an advanced class, one can move immediately to using 
software and simulate the game 10,000 times. Pedagogically a teacher should gauge the 
class as to whether the additional step of combining the class’s data is needed in this inves-
tigation or whether the 
students are conceptually 
ready to move to technol-
ogy at this point. If a class 
needs more practice with 
the concepts, then complet-
ing the step of combining 
the class’s data is suggested. 
If the class instead is com-
fortable with the ideas dis-
cussed and presented, then 
a teacher can move directly 
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to using software for a large number of simulations. Using a statistical software, such as 
TinkerPlots, we can simulate the game 10,000 times . The previous screenshot displays 
possible results. 

What we have done in this TinkerPlots window is set up two spinners with six pos-
sible outcomes that are equally likely to simulate the tossing of two dice. Then we run 
the spinners 10,000 times and we see that a five or six was rolled in die one but not die 
two a total of 2239 times. We got a five or six on die two and not die one a total of 2235 
times, and we got a five or six on both dice 1143 times. Therefore, the empirical proba-
bility of player A winning in this simulation is  4,383

10,000  = 0.44 and the empirical probabil-
ity of player B winning in this simulation is  2,239 + 1,143 + 2,235

            10,000                 
= 0.56 . 

We can also approach this problem by computing the theoretical probabilities using for-
mulas and probability rules. To do this, first we define the sample space for the random 
outcome of rolling two dice. The sample space is the set of all possible outcomes of a 
random outcome. In this case, one could get when the two dice are rolled. It is: 

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

The red potential outcomes are those where player A would win, while the others are 
those where player B would win. We see that player A wins 16 out of the 36 possible out-
comes. Therefore, P(player A wins) = 16/36 = 0.45.

We also observe that player B wins the remaining 20 times. Therefore, P(player B wins) = 
20/36 = 0.55. We can see that the empirical probability computed from the simulation is 
very close to the theoretical probability of 0.55. 

Another way to compute these theoretical probabilities is to recognize that the list of 
outcomes is just an array model. Such a model is often used when we teach multipli-
cation in the elementary grades. In this problem, we can think of the red outcomes as 
representing when A wins and the other outcomes as representing when B wins. From 
this, we can see that: 

P(A wins) = P(die 1 has an outcome of 1, 2, 3, or 4) * P(die 2 has an outcome of 1, 2, 3, or 4)
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This is the multiplication formula for two independent events. We say that two events 
are independent if the outcome of one of the events does not affect the outcome of the 
other event. In the case of the dice rolls, the outcome of the first die does not affect the 
outcome of the second die in any way. An example of dependent events might be the 
event of picking a spade out of a deck of cards on a first pick and then picking another 
spade on a second pick. Because one card is already chosen from the deck, the probability 
of getting certain cards changes for the second pick. These events are dependent. More 
discussion of independence in the context of two-way tables is included in later units. 

From the array, P(dice 1 has an outcome of 1, 2, 3, or 4) = 4/6 and P(dice 2 has an out-
come of 1, 2, 3, or 4) = 4/6.

Therefore, P (A wins) = ( 46 ) • ( 46 ) = 0.45.

Using the array representation, we notice that the P (A wins) + P(B wins) = 1, the entire 
space. We can then find P(B wins) = 1 - 0.45 = 0.55. This investigation thus offers a way 
to teach the multiplication formula in probability through simulation.

The theoretical probabilities computed closely match the empirical probabilities that 
were simulated after 10,000 simulations. At this point, the students should be convinced 
that they would want to be player B. 

A video for this investigation can be found at:
https://ed.ted.com/lessons/the-last-banana-a-thought-experiment-in-probability 
-leonardo-barichello#review.

A series of nine follow-up questions are also listed at the link (questions six through nine 
are adapted as Follow-Up Question 1 below).

This activity has been developed by many. It is presented in a TED Ed talk retrievable at 
www.youtube.com/watch?v=Kgudt4PXs28. It was also presented by Doug Tyson at the 
California Mathematics Council Conference in the fall of 2017.

As an additional note to this investigation, teachers could explore in more depth the 
law of large numbers. This would not be covered in the school-level curriculum, but 
could be introduced and covered for teachers. This investigation demonstrates the law 
of large numbers at play. The law states that the relative frequency of a specific out-
come of a random process tends toward the theoretical probability of that outcome 
as the number of repetitions tends to infinity. In this example, suppose we notate the 

https://ed.ted.com/lessons/the-last-banana-a-thought-experiment-in-probability-leonardo-barichello#review
https://ed.ted.com/lessons/the-last-banana-a-thought-experiment-in-probability-leonardo-barichello#review
https://www.youtube.com/watch?v=Kgudt4PXs28
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relative frequency of the number of times A wins out of n trials of the game as An

n

 where 
A

n
 is the number of times A wins and n is the total number of trials. Then, the law of 

large numbers states the following: 

where p denotes the theoretical probability of A winning (in this game, that is 0.45). 

This is saying that the probability that the relative frequency An

n

 is different from p is tend-
ing toward 0. What is important to note in the law of large numbers is that it connects 
the empirical probability of an outcome to the theoretical probability of an outcome.

INVESTIGATION SUMMARY: 
The main concepts developed in the last banana investigation are: 

1.  The empirical probability computed through simulations will converge on the 
theoretical probability as the number of simulations performed increases. 

2.  Illustrate how to estimate probabilities for complex situations using simulations. 
3.  If X and Y are independent events, then P(X and Y) = P(X) • P(Y).
4. The complement rule is given by the following formula:  P(X) = 1 - P(not X).

Investigation 3A.4: Game Board3 

Goals of this investigation: Introduce the notion of probability in a  

complex situation through simulations.

The committee for a school fundraiser is organizing a game to raise money for the school. 
To play the game, parents purchase tickets. For each ticket they purchase, they get one 
turn at the game. The game the committee designs is the following: 

A wooden peg board is constructed and a player releases one ball from the top of the 
board. The ball follows some pathway and ends in a bin at the bottom of the board. 

3 This activity was adapted from an activity developed by Wendy Weber at Central College, Iowa. 
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Image created via https://phet.colorado.edu/sims/html/plinko-probability/latest/plinko-probability_en.html.

The pegs on the board are placed in such a way that there is an equal chance for a ball to 
fall to the left past the peg or to the right past the peg. At the bottom, the cell has either a 
prize or no prize associated with it. A total of two prizes need to be placed at the bottom 
bins. The students of the school want to create a game so that the chances of winning a 
prize is low and those of not winning a prize are high. The students pose the following 
investigative question: 

Where should the two prizes be placed in order to have the lowest probability of winning?

To help answer the investigative question, the students decide to simulate a few drops of 
the balls in the game board. They set up the following simulation:

Each student receives a diagram of the game board showing all possible pathways the ball 
could take, a coin, and a ball. The following picture shows the game board that is used by 
the students: 

https://phet.colorado.edu/sims/html/plinko-probability/latest/plinko-probability_en.html
https://phet.colorado.edu/sims/html/plinko-probability/latest/plinko-probability_en.html
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All the students start their ball on the start square. To advance down the board, the 
students flip the coin. If the student flips heads, then they advance their ball to the right. 
If the student flips tails, then they advance to the left. The players keep going until they 
end in a bin at the bottom. 

Each player plays the game 10 times. For each game, the players mark in what bin they 
ended. Here is an example of 20 simulations that two students carried out:

Based on the 20 simulated games, the students can compute the relative frequency of 
landing in each of the cells. For the simulated game depicted, the relative frequencies are: 

 • Bin 0 happened 2/20 = 0.10
 • Bin 1 happened 3/20 = 0.15
 • Bin 2 happened 6/20 = 0.30
 • Bin 3 happened 6/20 = 0.30
 • Bin 4 happened 3/20 = 0.15

After going through the simulation in pairs, the students decide to combine their results 
into a single data set. They get the following relative frequencies for the class: 

 • Bin 0 happened 23/300 = 0.077
 • Bin 1 happened 84/300 = 0.280
 • Bin 2 happened 100/300 = 0.333
 • Bin 3 happened 76/300 = 0.253
 • Bin 4 happened 17/300 = 0.057
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While having 300 simulations is indeed a lot, the students want to find out if these rela-
tive frequencies hold in the long run. To test this, they find an online game that mimics 
their game at https://phet.colorado.edu/en/simulation/plinko-probability. They then 
run the simulation 10,000 times. The following results are obtained: 

For this large simulation, the following relative frequencies and empirical probabilities 
are computed: 

 • P(Bin 0) = 623/10,000 = 0.062
 • P(Bin 1) = 2472/10,000 = 0.247
 • P(Bin 2) = 3716/10,000 = 0.372
 • P(Bin 3) = 2557/10,000 = 0.256
 • P(Bin 4) = 632/10,000 = 0.063

These represent the empirical probabilities of landing in each cell. Next, we can use for-
mulas and rules to compute the theoretical probabilities. We then can compare how close 
our empirical probabilities are to the theoretical ones. 

To begin, the students list their sample space, which consists of all possible pathways from 
the start to the bins at the end. 

https://phet.colorado.edu/en/simulation/plinko-probability
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There are 16 possible pathways to the end bin. They are: 

ACF0 BEI4

ACF1 BEI3

ACG1 BEH3

ACG2 BEH2

ADG1 BDH3

ADG2 BDH2

ADH2 BDG2

ADH3 BDG1

The first thing to notice is that although each pathway is equally likely (have the same 
probability), the probabilities of landing in different bins are not equally likely. Instead we 
see that many more pathways lead to bin two than bin zero. In fact, bins zero and four are 
the ending cell for one pathway, bins one and three are the ending cell for four pathways, 
and bin two is the ending cell for six pathways. From this, we can compute the following 
theoretical probabilities: 

P(A) = P(E) =  1  
16 

 + 0.0625

P(B) = P(D) =   4  
16 

 = 0.25

P(C) =  6  
16  = 0.375

We note that these theoretical probabilities were very well approximated by empirical 
probabilities found by the 10,000 simulations. From these results, the students decide to 
put prizes on bin zero and bin four only.
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As an additional note to this investigation, teachers could explore the connections to the 
binomial coefficient and Pascal’s triangle by considering a generalization of the Plinko 
board to incorporate more rows. The online simulation app allows one to increase or 
decrease the number of rows in the Plinko board. The board in the investigation has four 
rows with five bins; however, what would the probability of landing in specific bins be 
if there were seven rows? Ten rows? Fifty rows?  rows? We can generalize our results to 
the case of  rows using counting rules and noticing patterns.

First, if there are n rows in a Plinko board, how many bins will be at the bottom? The 
answer is that there are n + 1 bins.

Next, in the previous, four-row example, we found that there were 16 total possible path-
ways to get to the bottom. We found this by writing out all of the pathways; however, we 
could recognize that for four rows, we have a total of 24 = 16 possible pathways. In the 
general case of n rows, this means that there are a total of 2n possible pathways. This will 
give us our denominator for the theoretical probabilities.

For the numerators, we have to somehow express the number of pathways that lead to 
each bin in terms of n and the selected bin. As before, we can label our n + 1 bins from 
0 to n + 1. By simulating, we notice that the middle bins always have more balls landing 
in them and that the number of pathways leading to the bins are symmetric about the 
middle bin(s). From this, we know that the number of paths leading to bin zero will be 
the same as the number of paths leading to bin n + 1, bin one is the same as bin n, bin three 
is the same as n − 1, etc.

We can first reduce the number of rows and look at the number of rows leading to the 
bins for these lower numbers. For example, for the Plinko board with two rows, we 
would have

with one possible pathway leading to bin zero, two possible pathways leading to bin 
one, and one possible pathway leading to bin two. Adding one more row to the Plinko 
board, we have the following: 
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For this Plinko board, we can count the pathways again and we see that there is one path-
way to bin zero, three pathways to bin one, three pathways to bin two, and one pathway 
to bin three. 

At this point, we observe a familiar pattern begin to emerge—Pascal’s triangle is at play! 
In fact, our example Plinko board with four rows has the possible pathways as one to 
bin zero, four to bin one, six to bin two, four to bin four, and one to bin four, which is 
exactly the next row in Pascal’s triangle. Using our knowledge about Pascal’s triangle, 
we know that the number of pathways to the n + 1 bins for the n row Plinko board 
must therefore be given by the binomial coefficient. Thus for bin k, the number of 
pathways leading to it in an n row Plinko board are:

C(n, k) = nCk 
n  

k 
 = 

     n!

k!(n-k)!

These connections to the binomial coefficient and Pascal’s triangle are additional 
mathematical ideas that can be easily connected to probability. These types of con-
nections are not statistical in nature; however, they do offer math teachers and 
math-teacher educators ways to make deeper connections between mathematics 
and probability. While these concepts are interesting to explore, the main point of 
the game board investigation is not to derive or work with the binomial formula or 
Pascal’s triangle, but instead to illustrate how simulations can be useful in computing 
probabilities and how the empirical probabilities tend toward the theoretical proba-
bilities as the number of repetitions increases.

INVESTIGATION SUMMARY: 
The main concepts developed in the game board investigation are: 

1. Probability calculations can help make decisions.
2. Implementing hand simulations is useful to build conceptual understanding 

before moving to software to carry out a large number of simulations.
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Investigation 3A.5: Random Exams

Goals of this investigation: Use probabilistic modeling and probability  

long-run computations through theory and simulation.

Jessica is a high-school teacher who recently collected and graded tests for her statistics 
class. While doing this, she noticed that out of all the tests she collected, four of them 
were turned in without names. When Jessica handed back the tests to the class, there 
were four students who did not receive a test, because they had forgotten to put their 
names on them. At this point, Jessica decides to randomly hand back the four tests to the 
four students and hope that the students get the test they turned in. She wonders what the 
chances are that each student will receive the correct test and decides to investigate the 
following questions with her class: 

How often will all four students be given their correct test?

This same question could be rephrased as follows: 

What is the probability that all four students received the correct test?

This scenario highlights probabilistic modeling. While the investigative questions ask for 
computations of probabilities, the underlying idea in the scenario is randomness. Students 
are being handed back tests randomly—a random process is occurring in this setting. The 
outcome from this random process of handing back the tests is not predictable, because 
we do not know whether each student will be handed back the correct test. The computa-
tion of the probability of obtaining four matches is based on the notion that if the random 
phenomenon of handing the tests back was repeated over and over again, we would want 
to identify the chances of getting four out of four correct matches.

With the class, Jessica can simulate the random process of handing back the tests over and 
over again and observe how many matches happen after each simulation, or she can com-
pute the probability directly of four matches using theoretical rules. She begins by simulating 
the process over and over again, first by hand and then using software. She then can com-
pare how close the empirical probability that she derived through the simulation matches 
up with the theoretical probability she computed using probability rules and formulas.

To simulate by hand, she takes four cards and labels them 1 through 4, each represent-
ing one of the tests, and four stick figures, labeled 1 through 4, each representing one 
of the four students (see Figure 1). She can mix the cards without looking at the labels 
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and then deal the cards out to the labeled people. If the number on the card matches 
the person’s label, then we call it a match. In the figure, we can see that the number of 
matches equals one, because person number 2 was the only individual to receive the 
correctly matched card labeled 2. 

Figure 1

Next, she repeats this random dealing process 25 times. For each time, we could com-
pute the number of matches made and then tally the total number of times that zero 
matches were made, one match was made, two matches were made, three were made, 
or four were made. To answer our investigative question, we would find how many 
matches of four were made and divide that number by 100. In this investigation, we 
move directly to software. For example, R can be used to carry out our simulation.

permutations <- permutations (n = 4, r = 4, v = 1:4, repeats.allowed = F)

First, Jessica simulates one round of passing back tests:

sample_permutations <- sample(permutations, size = 1, replace = TRUE)

Then, she wants to simulate 100 rounds of passing back tests. To do this, she first thinks 
about the sample space in order to set up the simulation correctly for the software. To 
consider all possible combinations of how the tests could be handed out, a sample space 
is notated. The sample space is the list of all possible outcomes of the random process. 
For this scenario, because there are four people, there are four “slots” to fill for each 
test. Suppose the teacher hands the first person test one, the second person test two, the  
third person test three, and the fourth person test four. This would give the outcome 
of 1234 and four people getting the correct four tests. Another outcome, 1342, would 
give the first person test one, the second person test three, the third person test four, 
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and the fourth person test two. In this outcome, only person one received the correct 
test. After making a sample space with the 24 possible outcomes, a table, like the one 
shown previously, can be made to organize each outcome and the number of correctly 
matched tests. 

Outcome Number of Matches Outcome Number of Matches

1234 4 3124 1

1243 2 3142 0

1324 2 3214 2

1342 1 3241 1

1423 1 3412 0

1432 2 3421 0

2134 1 4123 0

2143 0 4132 1

2314 1 4213 0

2341 0 4231 2

2413 0 4312 0

2431 1 4321 0

After analyzing the table, the outcomes illustrate that all four tests being matched cor-
rectly (outcome 1234) occurred one time. The outcomes where two tests were matched 
correctly (outcomes 1243, 1324, 1432, 2134, 4231) occurred five times; one test matched 
correctly (outcomes 1342, 1423, 2314, 2431, 3124, 3214, 3241, 4132, 4213) occurred nine 
times; and zero tests matched correctly (outcomes 2143, 2341, 2413, 3142, 3412, 3421, 
4123, 4312, 4321) nine times. It is worth noting that it is impossible to have three people 
obtain the correct test, but not the fourth. Therefore, the probability of three test-to-stu-
dent matches occurred zero times.

We can simulate this process numerous times to see how many times the outcome 1234 
occurs. This simulation can be done using code, software, or an online shuffling genera-
tor (e.g., www.dcode.fr/permutations-generator). For example, to run the simulation 25 
times in R, she can use the following:  

sample_permutations <- sample(permutations, size = 25, replace = TRUE)
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She can also run the simulation 10,000 times using R and obtain the following results: 

allcorrect <- sample_permutations[, 1] == 1 & sample_permutations[, 2] == 2 & 
 sample_permutations[, 3] == 3 & sample_permutations[, 4] == 4
table(allcorrect)
FALSE     TRUE 
 9604          396 

The R code output shows that 396 times out of 10,000, the permutation 1234 randomly 
occurred. Carrying out a simulation can illustrate the probability of outcomes in an intuitive 
way. We refer to the probability 396/10000 derived by the simulation as the empirical prob-
ability of the outcome 1234. Here we showed the simulation coded in R, however, teachers 
and students not familiar with coding can do the simulation using other software or online 
tools. This code is shown as an example of how this simulation can be carried out.

An alternative to carrying out a simulation using software would be to compute the probabil-
ities using theory4. For this scenario, Jessica can list out all the possible dealings that the four 
people could receive as outlined in the table. For example, person one could receive either test 
one, two, three, or four in one dealing. Then, depending on which test person one receives, 
person two can receive one of the remaining three tests. Person three can then receive one of 
the remaining two tests, and finally person four gets the last test. This means that there are 4 × 
3 × 2 × 1 = 24 possible test dealings (four options for the first test, three options for the second 
test, two for the third test, and the remaining one for the fourth test). 

Of these 24 possible test dealings, only one of them will have all four people receiving the 
correct test, namely the one where test one is dealt to person one, test two is dealt to person 
two, test three is dealt to person three, and test four is dealt to person four. Thus, the prob-
ability of obtaining four correct test-to-student matches is 1/24. 

By counting up the number of times no matches occur, we calculate the probability of get-
ting zero matches as 9/24. Similarly, by counting up the number of times one match occurs, 
the probability of getting one match is 8/24. And the probability of getting two matches is 
6/24. 

4 This same problem can be formulated using random variables, which are beyond the scope of this book. One can 
define a random variable X as the number of correct exams that are handed out. A random variable is a function 
from the sample space of the possible 24 outcomes to the set of numbers {0, 1, 2, 3, 4}. The random variable 
counts the number of correct matches. Then, the probability can be formulated in the following manner: P(four 
correct test-to-student matches) = P(X = 4) = 1/24. As noted, random variables are beyond the scope of this 
book. For readers with an interest in learning more about the theoretical formulation of random variables, other 
books can be consulted. 
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More formally, we can write the following: 

P(four correct test-to-student matches) = 
  1  
 24 .

We observe that this theoretical probability in fact closely matches the empirical proba-
bility when we performed the simulation 10,000 times. While in the short run, with 100 
trials being simulated by hand, gave a probability of 4/100, this probability settled to 1/24 
as we increased the number of trials to 10,000. When we increased the number of times 
we simulated the random process, the empirical probability converged on the theoretical 
probability we found using probability formulas.

The class recommends that teachers not hand back exams randomly and that as students, 
they must always be conscious of writing their name on their test. 

Allan Rossman and Beth Chance provide an applet for a similar scenario with random 
babies in a hospital not being labeled and then assigned to their mothers. The applet can 
be found here: www.rossmanchance.com/applets/randomBabies/RandomBabies.html.

The applet provides a way to simulate many trials and see the results.

INVESTIGATION SUMMARY: 
The main concepts developed in the random tests investigation are: 

1. A random process is a process for which the individual outcome is unpredict-
able. However, if the process is repeated a large number of times, then predict-
able patterns emerge in the outcomes.

2. Probability describes predictable patterns, and statistics uses these predicted pat-
terns by comparing what is actually seen in data with what should be expected.

3. Probability modeling provides a model that describes the long-term outcomes 
from a random process.

The previous investigations illustrated several important ideas. The first key concept 
is that probability is associated with a random process or random phenomenon. In sta-
tistics, we talk about probability in the context of understanding potential outcomes to 
a random phenomenon. This random event can have many possible outcomes that we 
can simulate (or collect data on) to observe their occurrence. These collected data show 
the connection to statistics. Statistics requires us to examine data in order to under-
stand how likely the data are to occur, which, in turn, can help us understand how to 
analyze and interpret the data. 

http://www.rossmanchance.com/applets/randomBabies/RandomBabies.html


168 | Statistics and Data Science For Teachers

Second, these investigations again highlight the idea of probability as a long-run rela-
tive frequency. The examples illustrate how in the long run, the relative frequency of 
an event “settles” to the theoretical probability of an event. This is a fundamental idea 
in statistics whereby we are trying to estimate things given the data being examined. 
One can compare the expected long-term patterns one should see in data with what 
one actually sees in the collected data in order to draw statistical conclusions.

Next, we introduce two commonly studied probability rules (the addition formula and 
the conditional formula) through simulations in order to show the usefulness of sim-
ulations to model more complex real-life situations, as well as to show how to make 
decisions and statistical predictions about what is unusual and plausible.

Investigation 3A.6: Soccer-Practice Game

Goals of this investigation: Introduce the addition rule through simulations.

A new high-school soccer team has been formed. To motivate the players, the coach 
plans to play a fun game at the end of each practice. The game consists of trying to score a 
goal from a corner kick and dribbling the ball in the air. To win the game each practice, a 
player needs to do one of the following: 

 • Make a shot directly on goal from a corner kick 
 • Dribble the ball in the air at least six times 

At each practice, the team plays the game. There are a total of 100 practices throughout 
the season.

Before playing the game at a practice, Bella practices at a field by her house. She makes 
two shots directly on goal from a corner kick out of 10 attempted shots. She also dribbles 
the ball in the air six times without dropping the ball seven times out of 10 attempts. She 
then goes home and sets up a simulation of the 100 upcoming practices based on this pre-
liminary practice to compute her probability of winning the game. She asks the following 
investigative question: 

What is the probability of Bella winning the game?
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She uses technology to simulate her performance in the game at each practice. She simu-
lates the two components of the game independently. She makes an important assump-
tion that corner-kicking and dribbling skills are not related; thus, modeling the two tasks 
as independent in the simulation. First, she sets up a spinner to represent her chances 
of making a corner kick. Based on her practice, she assumes that she has a 20% chance 
of scoring a goal directly from a corner kick. Second, she sets up a spinner to represent 
her chance of dribbling the ball in the air six times successfully. She does this with a 70% 
chance of success. She could have constructed spinners by hand and spun the spinners 
100 times to represent each game she will have to play in each practice. The simulation 
yields the following two-way table:

From the two-way table, Bella can compute P(make shot OR dribble 6). She is successful at 
the game in three different scenarios: making the corner shot and not dribbling success-
fully, dribbling successfully and not making the corner shot, and making the corner shot 
and also dribbling successfully. The two-way table represents these scenarios in the top 
left corner (4), bottom left corner (20), and the bottom right corner (51). Therefore the 
probability can be found as follows:

P(make shot OR dribble 6) =  20 + 4 + 51 
      100         =  75  

100  
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Another way to find this probability from the two-way table is to note that: 

P(make shot OR dribble 6) = P(make shot) + P(dribble 6) - P(make goal AND dribble 6)  

= 
 24  
100   + 

 71  
100   - 

 20  
100    

         =  
 77  
100  

Bella could have also applied the mathematical addition rule instead of using a simula-
tion to compute her probability. In applying the addition rule, Bella would have avail-
able only the estimated probabilities from her preliminary practice. 

The addition rule yields: 

P(make shot OR dribble 6) = P(make shot) + P(dribble 6)  
- P(make shot AND dribble) = 0.2 + 0.7 = P(make shot AND dribble) = ?

Given the information Bella has, to find the probability of the intersection, , she must 
assume that the two events, “make a shot” and “‘dribble,” are independent so that she can 
apply the multiplication rule as follows:

P(make shot AND dribble) = P(make shot) • P(dribble 6)

This then yields, 

P(make shot OR dribble 6) = P(make shot) + P(dribble 6) - P(make shot AND dribble)  
= 0.2 + 0.7 - (0.2)(0.7) = 0.9 - 0.14 = 0.76

As we can see, the empirical probability found in the 100 simulation is very close to that 
found using the probability rule. This probability rule is called the addition rule, and  
it states the following: For two events X and Y, P(X ∪ Y ) =  P(X) + P(Y) − P(X  Y).  
If the two events are independent, then as noted in the prior investigations, P(X   Y ) = 
P(X) • P(Y). Note that if the two events were dependent, then the simulation would be 
modeled differently. To create such a model, prior information would need to be known 
about the dependency.



Unit 3A: Probability Introduction  | 171

INVESTIGATION SUMMARY: 
The main concepts developed in the soccer-practice game investigation are: 

1. The addition rule for events X and Y in probability states: P(X ∪ Y ) =  
P(X) + P(Y) − P(X  Y).

2. If X and Y are independent, then P(X ∪ Y ) = P(X) • P(Y).
3. Simulations are useful to model and understand complex probabilistic scenarios. 

Investigation 3A.7: Detecting Disease
Goals of this investigation: Introduce conditional probability through simulations.

Strep throat is a common virus that is often prevalent in schools. To detect whether 
someone has this virus, doctors administer a rapid strep test. Even though the rapid strep 
test helps doctors make a diagnosis, it does, at times, give the wrong results. Specifically, 
the test could come back negative when in fact a patient has strep (false negative) or the 
test could come back positive when in fact a patient does not have strep (false positive). 
As a doctor, it is important to understand the chances of these false positives and false 
negatives occurring so that risks can be communicated accurately with patients.

A doctor asks:

What is the probability of not having strep throat given that  you get a positive rapid strep test result?

The doctor knows a few pieces of information to help her compute this probability (see 
www.medicinenet.com/rapid_strep_test/article.htm for reference):

1. Out of every 100 people that go to the doctor and get a rapid strep test,  
75 people actually have strep throat then confirmed by a throat culture.

2. The rapid strep test has a sensitivity of 95%.
3. The rapid strep test has a specificity of 98%. 

The sensitivity of a test refers to the ability of the test to correctly identify the patients 
who have strep. This means that the rapid strep test will be positive in 95 out of 100 
patients who have strep throat. Five out of 100 patients with strep will be missed by the 
test, referred to as a “false negative.”

https://www.medicinenet.com/rapid_strep_test/article.htm
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The specificity of a test refers to the ability of the test to correctly identify the patients 
who do not have strep. This means that the rapid strep test will be negative for 98 out of 
100 patients who do not have strep throat. Two out of 100 patients without strep will be 
false positives.

To investigate, the doctor starts by setting up a two-step simulation. She can model this 
situation with a hands-on simulation using different colored balls in bags, or she can 
directly go to technology to help her simulate a large number of trials. We will briefly 
describe a hands-on simulation one could go through, and then describe in detail a simu-
lation that could be carried out using technology. 

To simulate this scenario, the doctor needs 300 total balls and three bags. The first bag 
will model whether or not a person has strep throat, so she will include in the bag 100 
total balls, of which 25 are green and 75 are red. The red ball symbolizes the people with 
strep throat, and the green balls those without strep throat. 

In the next bag, she also places 100 balls. Of these 100, she places two yellow balls and 98 
blue balls. This bag represents the potential outcomes of a test when a person does not 
have the disease. The blue balls represent the test coming out negative, and the yellow 
balls represent the test coming out positive. In the last bag, she places the remaining 100 
balls. This bag represents the potential outcomes of a test when a person has strep throat. 
In this case, there is a 95% chance the test will be positive, so she places 95 blue balls, and 
there is a 5% chance the test comes out negative, so she places five yellow balls. 
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With this setup, students can begin to do a two-step simulation by first picking out of bag 
one and then, depending on the outcome, picking out of bag two or three. For example, a 
student may pick 

Bag one pick: Green  Bag three pick: yellow 
or 

Bag one pick: Red  Bag two pick: yellow

Students can simulate this process by hand by choosing the balls, and then placing them 
back in the bags and reshuffling. The following table illustrates how the frequencies for 
each of the possible outcomes would be recorded in a two-way table of this type: 

Negative Test Positive Test

No Disease

Disease

There are four possible categorical outcomes (no disease and negative test; no disease and 
positive test; disease and negative test; and disease and positive test). 

If instead we wish to move straight to software, we can set up a simulation using, for 
example, TinkerPlots that mimics the one we designed with the balls. Here is an image of 
three spinners, each spinner representing one of the bags:
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In TinkerPlots, we can run the simulation 10,000 times in a matter of seconds to obtain 
the following image: 

The table sorts the outcomes into the four possible outcomes that could occur. We can 
then transfer these outcomes into a contingency table similar to the one outlined previ-
ously. The table reports the frequency of the four categorical outcomes. 

Negative Test Positive Test Total

No Strep 2448 48 2496

Strep 349 7155 7504

Total 2797 7203 10,000

Looking at the contingency table (also referred to as a two-way table), when we say “given 
that you get a positive test result,” we are contingent on the positive column in the table. 
Those that are “no strep” in that column are the 48 out of the total 7203 positive test 
results. Thus, 

P(no disease given +) = P(no disease | +) = 48
7203  = 0.0066
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We can also model this probability using a tree diagram to see all the possible outcomes and 
the probability of those outcomes:

Figure 2. Test Outcomes Tree Diagram

From Figure 2, we see that we have four possible outcomes: 
 • Disease and + test
 • Disease and − test
 • No disease and + test
 • No disease and − test

The first pathway occurs with probability: P(strep AND +) = P(disease ∩ +) = (0.75)(0.95).

The second pathway occurs with probability: P(strep AND -) = P(disease ∩ −)=(0.75)(0.05).

The third pathways occurs with probability: P(no strep AND +) = P (no disease ∩ +) = 
(0.25)(0.02).

The fourth pathway occurs with probability: P(no strep AND −) = P(no disease ∩ −) = 
(0.25)(0.98).

The probability can also be computed through the conditional probability formula, 
which states the following for two events X and Y: P (X | Y) = P(X ∩ Y)

P(Y)  
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For our problem, the formula yields the following results: 

P (no strep | +) = P (no strep ∩ +)
P(+)

 = P (no disease ∩ +)
P(+)

We use our probabilities in the conditional probability formula in the following manner:

P(no strep | +) = P (no strep ∩ +)
P (+)  = P (no disease ∩ +)

P (+)  = (0.25)(002)
(0.25)(0.02) + (0.75)(0.95)  = 0.0069

This gives us the probability of not having strep throat given that the test result came out 
positive as 0.69%. Note that when using our conditional probability formula, we do not 
need to simulate the outcomes. The conditional probability formula gives us the theo-
retical probability, and the probability computed through the simulation is our empirical 
probability. Notice again that these probabilities are very similar; in fact, they are almost 
identical. (For the simulation, the probability is 0.0066, and the theoretical computation 
leads us to a probability of 0.0069.) We see that the empirical probability converges on the 
theoretical probability. 

In these more complex situations, simulations can help us “see” the process and con-
vince us of the probabilities. While in simple probability examples our intuition 
helps us, oftentimes our intuition in slightly more complex scenarios is not accurate. 
Through simulation, however, we can convince ourselves and students of the com-
putations. This provides rich activities for students instead of merely expecting them 
to memorize formulas. 

INVESTIGATION SUMMARY: 
The main concepts developed in the detecting disease investigation are: 

1. The conditional probability of X given Y is given by: P(X | Y) =  P(X ∩ Y)
P(Y)

2. Simulations in complex, sometimes counterintuitive situations can greatly help 
clarify and convince us of the probabilities.

3. Using simulations as a model of a scenario is useful to understand complex 
probabilistic outcomes.

4. Using the visualizations of two way tables and tree diagrams promotes better 
conceptual understanding of conditional probability than using formulas.

Follow-Up Questions
1. Suppose person A and person B are on a deserted island, and there is one 

banana remaining. They each have a die and have to play a game to determine 
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who gets to eat the last banana. The game goes as follows: Each player rolls a 
die and the outcomes are multiplied. If the product is a multiple of six, player A 
wins. If the product is not a multiple of six, then player B wins. Which player 
would you rather be?

2. Design a simulation for the scenario. Carry out the simulation for 20 iter-
ations by hand. Compute the theoretical probabilities associated with the 
scenario and discuss the relationship between the empirical and theoretical 
probabilities you found. 

A professional society of teachers wants to select a two-person subcommit-
tee for its curriculum committee. There are eight candidates, four from the 
southern region and four from the northern region, whom it feels would serve 
well on the subcommittee. If the committee would like to select one member 
from each of the northern and southern regions to ensure regional represen-
tation, what are the chances that the two-person subcommittee will ensure 
regional representation? This same question could be rephrased as follows: 

What is the probability that the two-person subcommittee will have one member 

from the southern region and one member from the northern region?

The investigations in this unit offer a deep and thorough introduction to 
probability through the use of simulations. The investigations in this unit 
intended to demonstrate the connection between probability and statistics by 
using probability to model data from situations in real life, and using empirical 
probabilities to estimate and make statistical predictions about what is plausible 
and unusual. Again, statistics is a way to draw conclusions in light of random-
ness, and probability gives you the tools to model and quantify randomness.

We notice that often our intuitions in complex probabilistic scenarios are 
not correct. Simulations offer us a way to explore the outcomes of complex 
situations and check our intuition. It is important to realize that using simula-
tions through technology as described in this unit is reliant on the capabilities 
of software. 

When probabilities were computed before software was available, it was 
often not feasible to simulate a random process many times (e.g., 10,000 times). 
Thus, more reliance was placed on the formulas and theoretical rules than they 
are today. The beauty of simulation is that it makes probabilistic modeling 
accessible to students in K–12, not just postsecondary students.

Simulations are explicitly mentioned in state standards in middle school, and 
probability rules are explicitly mentioned in high school. The investigations in 
this unit can be used at all grade levels to address the standards. It is suggested 



178 | Statistics and Data Science For Teachers

to first do each simulation by hand and then move to technology in order to 
reinforce student understanding of the simulation process. 

Several different applets and software can be used to carry out simulations. 
In addition to StatCrunch, mentioned in previous units, this unit makes use 
of TinkerPlots and Stapplet.com, as well as online simulation games. While 
the software introduced are useful, they are by no means the only software in 
existence that can be used to carry out these simulations. The examples shown 
in the investigations are meant to illustrate how a simulation can be set up to 
model the scenario; the simulation can then be carried out in any software that 
allows the user to do so.

References for This Unit
Martin, W.G. 2000. Principles and standards for school mathematics. Volume 1. National 

Council of Teachers of Mathematics.
National Governors Association. 2010. Common core state standards. Washington, DC.
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UNIT 3B:
Probability in Statistics

Now that we are familiar with the notion of probability and comfortable with the 
idea of simulations, we can begin to understand how these ideas are employed in 
statistics. Statistics utilizes randomness as a component of data collection in two 
ways: with random sampling and with random assignment. Imposing random 
selection in determining which units are included within a sample helps to reduce 
bias. Bias is the systematic favoring of certain units to be included within a sample. 
Random selection ideally produces a sample that is representative of the targeted 
population. That is, the distribution of the data in a sample is similar to the distribu-
tion of the data in the entire population. Random assignment of the units in a study 
helps to balance out the effects of potentially confounding variables and provides the 
foundation for establishing cause-and-effect relationships between variables. These 
are random processes through which we can collect data. Such random processes are 
foundational in statistics because they allow us to make decisions, inferences, and 
generalizations, and show cause and effect using data. Inference is being able to infer 
and generalize information using a sample to a population. Cause and effect, or causal-
ity, is making statements implying that one treatment or condition causes another—
in other words, changes in values of one variable are a result of changes in values of 
another variable. 

Random sampling is the pillar for statistical inference. For example, if a study is done 
with a group of volunteers, the results from that study may not be generalizable to 
the greater population. Suppose you are curious about whether people in the United 
States are in favor of allowing many more refugees to enter the United States on polit-
ical asylum. If a poll surveys only those of refugee descent already living in the United 
States, the results cannot be generalized to the greater population because those of 
refugee descent are probably more likely to agree that many more refugees should be 
admitted than are U.S. residents in general. To better understand and generate accu-
rate statistics regarding peoples’ opinions about the crisis, a random sample of people 
should be polled, ideally resulting in a representative sample of the U.S. population. 

Random assignment is the pillar for establishing causality. Consider Mr. Ditrick, 
a man in his early 60s who is trying to decide whether to retire. Mr. Ditrick decides 
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to discuss the possibility of retiring with his friends, and one of them mentions that 
people who retire are more likely to die sooner than people who do not retire. To jus-
tify his friend’s conclusion, Mr. Ditrick should seek a study that shows whether retir-
ees are more likely to die sooner than those who do not retire. If a study wanted to 
make such a causal claim, in particular that retirement leads to an earlier death, the 
subjects of the study should be randomly assigned to one of two possible situations, 
either early retirement or retirement at a traditional age. Note that ethical consider-
ations need to be made, which might limit the type of random-assignment experiments 
one could actually conduct. For example, people cannot be forced to retire early, and 
thus this study would be considered unethical. If such a study were possible, then the 
study would need to analyze if there were a significant difference in the proportion of 
deaths among people who retired early and the proportion of deaths among people 
who retired at a traditional age, so a causal claim could be made. However, when Mr. 
Ditrick asked his friend about his evidence, the friend stated that it had happened to 
many people he knew. He had observed that friends who’d retired early, died early, 
and those who retired later, died later. From this, the friend drew the conclusion that 
retirement causes early death. This friend was relying on anecdotal data. These anec-
dotal data do not take into consideration potential lurking variables, such as the fact 
that people may retire early because they are not well or that people who are retiring 
early might have the financial means for better health care. If one listens carefully, one 
may notice that people draw these types of conclusions all the time without consider-
ing the validity of the implications. Therefore, knowing about random assignment and 
understanding the role it plays in drawing conclusions is important in order to make 
valid decisions. 

In this unit, part A and part B present case studies introducing the ideas of random 
sampling and random assignment found in current news articles. Additionally, the 
units provide investigations related to random sampling and random assignment and 
explore what probability and randomness afford us in statistics. 

Unit 3B.a: Probability in Statistics: Random Sampling

We use probability in statistics in order to draw inferences—drawing conclusions 
about a population using only the information in a sample taken from that popu-
lation. Random sampling provides us with the foundational conditions to make 
inferences. In this unit, we begin to describe random sampling and its importance to 
drawing inferences.
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Suppose you are trying to gather information about a 
population but that population is so large that either 
(1) you cannot reach each individual in the popu-
lation or (2) you do not have the resources to reach 
each individual. To help you get a sense about a char-
acteristic(s) of the overall population, you might want 
to gather information from a subset of that popula-
tion. In statistics, the subset of a population is known as a sample, and knowing the best 
way to select a sample is an important process. For example, suppose an administrator 
is interested in finding out students’ opinions about whether the game Pokémon GOTM 
keeps students active and moving. If the administrator asks the opinion only of students 
who are currently on athletic teams, the administrator may conclude that, because of the 
beliefs of the students in the sample, everyone at the high school believes that Pokémon 
GOTM keeps them active and moving. However, because the students who were asked 
represent a distinct subset of all students at the school, the principal’s conclusion about 
Pokémon GOTM keeping students active may not generalize to the entire high school.  

Case Study 6: Polling
We often want to use information from a sample to generalize and draw conclusions about 
the entire population. However, to do this accurately, the sample must have certain features 
aligned with those of the population. The selection of a sample can be done in many ways. 
For example, if the population of interest were adult voters in the United States, one could 
ask volunteers to take a survey about their political ideas, or one could obtain a list of regis-
tered voters in a certain party and survey people from that list. Consider the following case 
study article published in June 2016 on the Gallup website comparing Donald Trump’s and 
Hillary Clinton’s images (see www.gallup.com/poll/193043/trump-image-slips-clinton 
-holds-steady.aspx?g_source=ELECTION_2016&g_medium=topic&g_campaign=tiles). 

The article discusses the fluctuations of net favorability of each candidate from August 
2015 to June 2016. Net favorability is defined in the article as the percentage of people 
polled with favorable views minus the percentage of people with unfavorable views. 
The article discusses the net favorability of the candidates instead of the mere number 
of people with favorable views or the percentage of people with favorable views for 
each candidate in order to show how polarized the voter polls might be. The difference 
between favorable and unfavorable views provides an estimate for the difference in 
voter’s opinions of each candidate.
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The article states that surveys were collected “based on telephone interviews conducted 
June 13-19, 2016, on the Gallup U.S. Daily survey, with a random sample of 3,560 adults, 
aged 18 and older, living in all 50 U.S. states and the District of Columbia.”

A simple random sample is a sample selected in such a way that each possible sample of 
a given size has the same chance (probability) of being selected. Thus, each of the possible 
samples is equally likely to be selected. Note that in simple random sampling, each indi-
vidual in the population has the same chance (probability) of being selected as well. For 
the purpose of this book, we will say “random sample” to imply a simple random sample. 
Note that there are other types of strategies for selecting samples that utilize randomness 
that are beyond the scope of school-level curricula. 

Suppose there were six people at a dinner party, but the dinner table was only set up for 
four people, so because of space, two people had to eat in the kitchen. The six people 
decided that they would randomly select two people who would then sit in the kitchen 
for dinner. To do this, they put their six names on small index cards, folded each card 
two times, and then put them in a hat. Then they mixed them and selected two names. 
The two names selected would go sit in the kitchen for dinner. This is an example of a 
simple random sample because each dinner guest had the same chance of sitting in the 
kitchen, and each possible sample of two people had the same chance of being selected. In 
this example, a nonrandom sample could be that the two people selected to go sit in the 
kitchen were the two people who were wearing the most colorful shoes. This selection 
would not be random because men’s shoes tend to be less colorful than women’s shoes; 
therefore, the women at the dinner party would be more likely to be selected to eat in the 
kitchen compared with the men at the party.

Having samples drawn in a random manner ensures that in the long run, selection 

biases (often also called sampling bias) are not present in the sample. Selection bias 
is one type of bias that favors a certain type of outcome due to the method of sam-
pling. The Gallup poll concerning the 2016 presidential candidates states that 3,560 
adults were selected in the random sample. If these adults were selected via a poll on 
a social-media site, for example, then this could result in a bias, because only certain 
people take the time to answer polls and surveys, and only certain people have access 
to the internet. This sample is not random from the population of all those adults that 
could vote because people are being asked to volunteer. This type of sampling would 
create systematic issues that would have been minimized if the sampling had been 
random from the entire population of voters. This may systematically result in out-
comes favoring one particular candidate.
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Another type of selection bias can be created when a sample is not representative 
of the population that one is interested in. Even though a sample may be randomly 
selected, it may still not be representative of the intended population. For example, 
if the 3,560 adults were all chosen randomly from a particular demographic, such as 
the very wealthy or a group of all women, sampling bias would be present because the 
wealthy might be inclined to favor Donald Trump and women might be inclined to 
favor Hillary Clinton. This may systematically result in outcomes to be in favor of one 
candidate. Although maybe the women were chosen randomly from the population of 
women, the article is interested in inferring results to the entire population of adults; 
thus, looking only within a particular demographic would bias the results and leave 
one unable to infer to the intended population.  

It would not be in the best interest for a news article to publish results of a study if 
it had gathered information from only a particular demographic, because the results 
would not be inferable to the larger population, which in this case is voters in the 
United States. The purpose of the Gallup poll was to use the sample information to 
infer to the general voting population about the favorability of the two candidates. If 
the sample were biased, the study would not be able to do this.

Because random sampling minimizes sampling bias, this enables us to draw more 
reliable and representative inferences about the population. We do, however, have 
to be aware of the potential for bias being created by other things, such as nonre-
sponse or response truthfulness. For example, if a survey was administered about the 
sexual activity happening at a school, students who have had bad experiences might 
be more likely to not answer the survey if mailed to them, or if interviewed, might be 
more likely to not give truthful answers. These situations would create a bias in the 
responses. 

The Gallup article applies inference in the statement “For results based on the total 
sample of national adults, the margin of sampling error is ±2 percentage points at the 
95% confidence level.” The margin of error measures the variability of the statistic. 
If we were to sample repeatedly from the population, the margin of error measures 
the amount of expected variability of the resulting statistic when compared with the 
true value of the population parameter. This tells us that the results found from this 
sample can be inferred to the population with certain error caution. The margin of 
error allows using the descriptive summary values found from the sample to infer to 
the population by quantifying the potential variability due to sampling. 
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The last paragraph of the article discusses how the random sample was actually taken. 
It says, “Each sample of national adults includes a minimum quota of 60% cellphone 
respondents and 40% landline respondents, with additional minimum quotas by time 
zone within [the] region. Landline and cellular telephone numbers are selected using 
random-digit-dial methods.” This is useful information because it allows us to under-
stand where the data are coming from. To form the sample, a list of phone numbers 
was obtained. Forty percent of the time, a number was randomly selected from the 
landline, and 60% of the time, a number was randomly selected from the cell-phone list. 
This random-sampling process creates a random sample of 3,560 adults who were then 
surveyed by phone. Because the process was random, the sample minimizes sampling 
biases and mathematical theorems of inference can be applied to generalize the results 
to the population of all adult voters.

It’s important to note that systematic sampling bias in samples is minimized when the 
sample is random. If sampling biases are present, then we are unable to generalize results 
to a population. In statistics, the importance of random sampling lies in the ability to draw 
inferences using samples to populations. With samples that have biases present, we are 
unable to infer results to the greater population.

CASE STUDY SUMMARY: 
The main concepts developed in the polling case study are: 

1. A simple random sample is a sample where each sample of the same size has 
the same probability of being selected.

2. Random sampling minimizes sampling bias in the outcomes due to the sampling 
method used and tends to provide a representative sample of the population.

Investigation 3B .a .1: Sampling of Words5

Goals of this investigation: Compute a sample statistic, receive an informal introduction to sam-

pling distributions, and connect random sampling to probability and the ability to draw inferences.

The case study introduced the idea of random sampling as a way to avoid sampling bias 
when using sample information to infer to the larger population. In this investigation, we 
will explore the idea of random sampling and further explore what it affords us in statistics. 

5  Activity adapted from Allan Rossmann and Beth Chance activity discussed in https://askgoodquestions.
blog/2019/11/11/19-lincoln-and-mandela-part-1/.

https://askgoodquestions.blog/2019/11/11/19-lincoln-and-mandela-part-1/
https://askgoodquestions.blog/2019/11/11/19-lincoln-and-mandela-part-1/
https://askgoodquestions.blog/2019/11/11/19-lincoln-and-mandela-part-1/
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A manuscript has been found with no author. Several historians wonder if Abraham 
Lincoln could have written the manuscript. They decide to have an analysis of a 
known manuscript he wrote, the Gettysburg Address, to judge if the writing style is 
similar. The length of the words in the Gettysburg Address is first investigated. 

We begin by posing the following investigative question:

What is the typical length of a word spoken in the Gettysburg Address?

Consider the population of 268 words included in the Gettysburg Address given by 
President Abraham Lincoln in 1863: 

Four score and seven years ago, our fathers brought forth upon this continent a new nation: 

conceived in liberty, and dedicated to the proposition that all men are created equal. 

Now we are engaged in a great civil war, testing whether that nation, or any nation so 

conceived and so dedicated, can long endure. We are met on a great battlefield of that war. 

We have come to dedicate a portion of that field as a final resting place for those who 

here gave their lives that that nation might live. It is altogether fitting and proper that 

we should do this. 

But, in a larger sense, we cannot dedicate, we cannot consecrate, we cannot hallow this 

ground. The brave men, living and dead, who struggled here have consecrated it, far 

above our poor power to add or detract. The world will little note, nor long remember, 

what we say here, but it can never forget what they did here. 

It is for us the living, rather, to be dedicated here to the unfinished work which they who 

fought here have thus far so nobly advanced. It is rather for us to be here dedicated to the 

great task remaining before us, that from these honored dead we take increased devotion 

to that cause for which they gave the last full measure of devotion, that we here highly 

resolve that these dead shall not have died in vain, that this nation, under God, shall 

have a new birth of freedom, and that government of the people, by the people, for the 

people, shall not perish from the earth.

For the purpose of this investigation, we consider the words of the Gettysburg 
Address as the population and the variable of interest to be the length of the words 
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in the address. To see what the average word length is, we could count the length of 
all the words in the speech and compute the mean (the population value of interest). 
Instead, as a statistical exercise, we can take a sample of words from the speech and 
if appropriate generalize the results from the sample to the population. It should be 
noted that in real-world circumstances, when we attempt to use sample information 
to generalize results to a larger population, we typically do not have access to the 
entire population. For our first sampling method, we will take our own sample of 
words using our eyes and show how to use the sample to estimate the length of the 
typical word in the population.  

Begin by taking a sample of 10 words from the speech. To do this, take a pen or 
pencil and circle 10 words. After you have selected 10 words, continue reading the 
instructions. 

Suppose, for example, we circled the following words: 

liberty, civil, battlefield, dedicate, poor, nobly, honored, freedom, government, people

For each of our words, we count the number of letters in the word and record it. 

Word liberty civil battlefield dedicate poor nobly honored freedom government people

# of Letters 7 5 11 8 4 5 7 7 10 6

The average length of words in this sample is seven letters. Is this a good estimate of the 
average length of words in the entire address? 

To answer this question, we should ask ourselves whether the 10 words we circled are 
representative of the lengths of the 268 words in the population. Did we have some bias 
while we were sampling our words? Is our sample of words random? Let’s investigate the 
answers to these questions. A class of teachers made two dotplots. The top dotplot shows 
the means from the teachers’ ‘by eye’ samples. The bottom dotplot shows the means from 
random samples selected by software. 
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We see that the “by eye” self-selection method produced sample averages that are much 
higher than those that came from random samples selected by software. Our results show 
that our eyes gravitate toward the longer words, so instead of each word having equal 
probability of being selected for the sample, we have a size-bias and select the longer 
words with higher probability. 

To further explore random sampling, we can place every word in the Gettysburg Address 
in a spreadsheet and then randomly sample 10 words. For example, the spreadsheet might 
look like the following image. 

To explore how the average number of letters in the Gettysburg Address varies depend-
ing on the sample chosen, we can have computer software generate random samples of 
size 10 and compute the average for each sample. In other words, if the random process 
of choosing 10 words and computing the average length of the words was repeated a 
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large amount of times, how would the average behave? What is the probability of get-
ting an average word length of seven as we did before? 

Each dot on the following dotplot shows the average word length for one sample of 
size 10. There are 1000 dots because the software selected 1000 different samples of 10 
words each. 

For example, there were four samples of size 10 that had an average word length of 
six letters. On the other hand, no sample had an average word length of seven. Does 
this surprise you? Why or why not? We can see from the dotplot that the average 
word lengths from random samples of size 10 are centered on 4.3. But there is a lot of 
variability in the averages from sample to sample. If additional samples of this same 
size are taken, we see that the dotplot is more clearly centered on 4.3. (See previous 
dotplot). This center is the mean of the means—the average of the sample averages. 
This indicates that, in the long run, the mean of the sample means settles around 4.3. 
This long-run connection to probability for the mean of the means will be further 
developed in the next unit.

It turns out that our initial sample of 10 words with an average word length of seven did 
not occur even one time in the 1000 samples that we simulated. In other words, the prob-
ability of getting a sample of 10 words with an average word length of seven was zero 
(or nearly zero). Of course, this probability was based on the fact that the samples were 
drawn at random. 
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Was the sample we took by circling 10 words drawn at random? The answer is no. 
Although we thought we selected random words, our eyes were not drawn to any of 
the short, seemingly insignificant words such as we or a. These short words were over-
looked in our sampling. For our sample to have been truly random, we could have 
assigned each word in the Gettysburg Address a number—for example, one through 
268—then picked 10 numbers between one and 268 out of a hat or using a random 
number generator. For the random sample in this table, the average word length is 4.3.

Random # 84 62 102 142 57 195 97 17 226

Word gave of this will met dedicated proper conceived we

# of Letters 4 2 4 4 3 9 6 9 2

All of the words in the Gettysburg Address make up the entire population. So we 
can compare the pattern we see in the dotplot with the actual average word length 
in the entire population of words in the Gettysburg Address. The average population 
word length in the Gettysburg Address is 4.295. In the dotplot with 1000 samples, 
we see that many of the random samples selected had sample means around 4.3—the 
mean of the sample means is 4.3. It appears that the mean of the sample means is near 
the true population mean. This idea will be further explored in the next unit. This 
Gettysburg Address investigation shows us that we can see the pattern in the values 
of a sample mean value (in this case, the average word length) by repeatedly selecting 
random samples from a finite population. 

Concepts of probability in the Gettysburg Address investigation are seen in two 
ways. First, they are seen in ensuring that each word in the address does in fact have 
the same chance of being selected (i.e., longer words do not have a greater chance 
of being selected). Second, the notion of probability as the long-term outcome of a 
random process is touched upon in this example. In the long run, the probability of 
the mean of the means, 4.3, settles close to the true population average word length.

INVESTIGATION SUMMARY: 
The main concepts developed in the sampling of words investigation are: 

1. A sample statistic can vary from sample to sample. A dotplot can be used to 
visualize the distribution of the statistic from sample to sample.

2. In simple random sampling, each outcome is ensured the same probability of 
being selected. Without random sampling, then our results may not be valid for 
drawing conclusions about the population. 
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Follow-Up Questions
1. AngieClothing, a women’s clothing store, wants to know how many times in a 

year women in the United States shop at its stores. Of the women who subscribe 
to AngieClothing emails, 1,500 are sampled, and 80% of them reported shopping 
at AngieClothing four to six times a year. Is 80% likely to be a realistic estimate 
for the true percent of women in the United States who shop at AngieClothing 
four to six times a year? Why or why not?

2. A state initiative came out requiring all public high schools to give an assembly 
on the dangers of driving while texting. After the assembly, pledge cards were 
passed around so students could vow not to text and drive. To see if the program 
worked, a random sample of 1000 students who sent in cards saying they intend-
ed to quit texting while driving were contacted three months later. It turned 
out that 130 of the 1000 sampled individuals had not texted over the past three 
months. What is the population? What is the sample? Based on these data, can 
one conclude that the initiative was a success? Why or why not?

3. Suppose an administrator of a large district is curious how many teachers work 
over summer break. He does not have time to ask all of the teachers in the district 
about their summer plans, so he would like to contact a sample. 
a. How would you suggest the administrator do this?  
b. Is it important for the sample to be random? Why or why not?

Unit 3B.b: Probability: Random Assignment

The first section of this unit focused on the foundational ideas of making inferential state-
ments. Another important notion in statistics is that of making causal statements. Making 
causal statements is a goal of many statistical studies. We design many studies and experi-
ments to understand how one variable can influence another. For example, someone may 
design a study to investigate if receiving tutoring in mathematics can cause students to get 
better grades, or whether taking a specific drug might cure a patient of a certain disease. 

To investigate such questions, subjects participating in the study must be randomly 
assigned to different conditions. In the case of mathematics tutoring, the subjects may be 
high-school students, and they may be randomly assigned to two conditions; one con-
dition would be receiving tutoring and the other condition would be not receiving it. 
Then, grades of students receiving tutoring could be compared with grades of students 
not receiving tutoring. For a study on the effectiveness of a drug, a group of patients 
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with a certain disease could be the subjects and they could be randomly assigned to either 
receiving a drug or not receiving a drug. The effects of the drug could then be examined 
by looking at how the patients’ disease progressed for those patients receiving the drug 
versus those not receiving the drug. 

Suppose you are trying to understand how a type of behavior or an intervention affects 
another. You are interested in exploring the cause-and-effect relationship between two 
actions. To make cause-and-effect conclusions, one might conduct an experimental 
study. Remember that you explored the differences between observational and experi-
mental studies in Unit 1. An experimental study, or an experiment, is one where the 
researchers manipulate some condition in the study. For this type of study, researchers 
do not merely observe to collect data. Instead they implement a treatment, an interven-
tion, a procedure, or a program and then observe the result. Contrary to observational 
studies, in an experimental study, researchers impose a treatment and an outcome 
is measured. In experimental studies, treatments are applied to the experimental units, 
and then the units are measured on some desired outcome. Experimental studies allow 
researchers to study whether changes in the treatment resulted in corresponding changes 
in the response variable. To make cause-and-effect statements, the observational units 
must be randomly assigned to different treatments or conditions. A treatment or 
condition in an experimental study can be defined as the factor that is being studied in the 
experiment. For example, suppose researchers are interested in understanding whether 
an online mathematics-tutoring program is as good at increasing student achievement 
as in-person tutoring. To conduct an experiment, researchers may recruit a group of 
students in a school and then randomly assign them to receive in-person mathematics 
tutoring or online mathematics tutoring. The treatment is the type of tutoring received, 
either the in-person tutoring or the online tutoring. 

Random assignment implies that a random process, such as flipping a coin, is used 
to decide whether a subject would be put in the in-person or online tutoring. Because 
this study analyzes student achievement, it is important for the students to be ran-
domly assigned to the two types of tutoring in order to ensure that each group of stu-
dents does not have some specific set of characteristics. For example, if students were 
allowed to choose their own tutoring program, then it is possible that the students who 
would select online tutoring would be those that generally spend a lot of their time 
on computers. This could lead to bias in the study, because  online tutoring might be 
good at raising achievement only for students who are comfortable using a computer. 
Randomly assigning students to the two groups mitigates the influence of outside fac-
tors, such as background computer knowledge, because presumably both treatment 
groups will have students with a range of computer experience. For example, consider 
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a weight loss study with 100 volunteers. Researchers randomly assign the group to two 
conditions—one to the new diet and one to their current diet. Several factors could 
influence the amount of weight loss a person could experience, namely, how much 
they exercise or how healthy they normally eat. With random assignment, these factors 
should be equally distributed across the treatment and control diets. In other words, the 
distribution of exercise amounts across the two conditions should be similar. That goes 
for all potential influencing factors. In an experiment, the researcher randomly assigns 
which groups receive which treatments. The goal of random assignment is to balance 
the effects of unmeasured variables across groups.

Case Study 7: Flossing
To be careful consumers of data, one must consider the value of random assignment in 
an experiment as it allows one to discuss cause and effect. Consider this New York Times 
article about the effects of flossing on preventing cavities and gum disease:  www.
nytimes.com/2016/08/03/health/flossing-teeth-cavities.html?mwrsm=Email&_r=1.

The article discusses how, although it has been suggested by both dentists and the fed-
eral government in the dietary guidelines provided by the Department of Agriculture and 
Health and Human Services that flossing will prevent cavities and gum disease, this cause-
and-effect relationship has not been appropriately researched. The article mentions that 
among experts, it has been an “open secret” that flossing has not been shown to cause a 
reduction in cavities or gum disease. 

The article mentions 12 randomly controlled trials that examined the effect of flossing 
on plaque reduction after one to three months that were published in the Cochrane 
Database of Systematic Reviews. “Randomly controlled studies” tell us that in 
these 12 studies, people were randomly assigned to either the condition of flossing 
or not flossing for a period of three months. In a study of this type, it is import-
ant to randomly assign participants to a flossing group and others to a non-flossing 
group due to potential confounding variables that might arise. For example, levers 
of gum disease among participants at the beginning of the study. A researcher would 
not want all participants with severe gum disease to be assigned to the same treat-
ment group. Similarly, for other levels of gum disease. A researcher relies on random 
assignment to balance out the various levels of gum disease between the two groups 
(flossers and non-flossers). At the one-month mark and the three-month mark, the 
participants’ teeth were examined to see the amount of plaque present. The article 
continues by noting that flossing has been shown to have some benefit for gum dis-
ease, or gingivitis, but notes that the evidence was low. Stating that the evidence was 
low might imply that the difference between the two groups, the flossers and non-
flossers, was not that large, or possibly that some of the studies found no difference 
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between the two groups and some found only slight differences between them. 
Although there might have been some difference in participants’ gums, there was not 
a drastic difference. 

Later the article says that brushing with fluoride has been proven to “prevent dental 
decay.” This implies a cause-and-effect conclusion, which implies that random assign-
ment was used. People were assigned to the fluoride and nonfluoride treatments for 
an extended period of time, and their dental decay was measured at different points. 
The difference in the amount of dental decay between the nonfluoride group and the 
fluoride group was large, thus providing strong conclusive evidence of the cause-
and-effect relationship between fluoride treatment and the reduction of decay.

Although a connection between fluoride and decay has been found, the relationship 
between fluoride and gum disease or cavities has not been found to be statistically 
significant. This is addressed in the article with an interview with one of the doctors. 
Dr. Sebastian G. Ciancio’s comment suggests that longer randomized studies should 
be used to further test the effect of fluoride on gum disease and cavities. From the 
studies that have been conducted, one may not see effects in the short term, but it is 
possible that a long-term study may lead researchers to see the effects 20 years down 
the line. One challenge of a randomized experiment over a long period of time is that 
it might not be realistic to carry out. Thus, despite the lack of rigorous studies, den-
tists still recommended that people floss. 

This case study illustrates some of the difficulties with conducting randomized exper-
iments. Although they are the gold standard and necessary to claim cause and effect, 
they are at times very difficult to carry out in real life. In statistics, the importance of 
random assignment lies in the ability to make cause-and-effect claims. 

CASE STUDY SUMMARY: 
The main concepts developed in the flossing case study are: 

1. An experimental study, or an experiment, is one where the researchers manipu-
late or impose some condition in the study.

2. Experimental studies allow researchers to study cause and effect. To make causal 
statements, the observational units should be randomly assigned to different 
treatments. 

3. Random assignment implies that a chance procedure is used to assign subjects 
to a treatment in the study. 
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Investigation 3B .b .1: Swimming With Dolphins6

Goals of this investigation: Illustrate how knowing the long-run probabilistic  

behavior of a statistic can help determine whether the statistic happened by  

chance or was caused by the treatments in the experiment.

Researchers published a paper exploring the effects of swimming with dolphins as a 
treatment for depression. Specifically, they aimed to answer the following investiga-
tive question: 

Does swimming with dolphins help alleviate signs of depression?

Their paper, published in the British Medical Journal in 2005 (Antonioli and Reveley, 
2005) and found at http://archive.is/I3Bow, discusses an experiment that randomly 
assigned 30 patients who were diagnosed as depressed to two groups—one group of 
15 patients was designated to swim with dolphins and the other group of 15 patients 
was designated to not swim with dolphins. As discussed, the reasoning behind ran-
domly assigning units to the two groups is to help mitigate and balance the effects of 
confounding variables. A confounding variable is a variable that affects the variables 
being studied, thus potentially masking the actual relationship between the variables 
under investigation. For example, hot chocolate sales and tissue box sales might appear 
related because they both increase and decrease at the same time; however, the weather 
temperature is a confounding variable. Both the hot chocolate sales and the tissue box 
sales are related to the temperature, but not to each other. Therefore, the tempera-
ture is masking the actual relationship between the variables. In this investigation, 
the researchers used an experiment because they wanted to make a causal statement 
regarding depression and swimming with dolphins.

To answer the investigative question, we need to look at the difference in the number 
of people who showed a decrease in symptoms of depression in the dolphin group 
versus the number of people who showed a decrease in symptoms in the nondol-
phin group. We want to consider the difference between the two groups’ symptom 
improvements and try to understand whether that difference could have happened by 
the chance variation resulting from the random assignment of participant to treatment 
groups, or whether the difference was in fact a result of swimming with the dolphins. 
To do this, we look for patterns in the long-run behavior of the difference of the two 

6 Activity adapted from Strayer and Matuszewski (2016). 

http://archive.is/I3Bow
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groups. This is where probability comes into play. To aid our investigation, consider 
these guiding questions: 

How often can our observed difference of symptoms occur if we assume random chance?

What is a typical difference that could happen just by random chance?

The researchers’ results indicated that 13 of the 30 participants showed improvement in 
their depression level at the completion of the study. Assuming that swimming with dol-
phins had no effect on depression levels, of the 13 participants that improved, how many 
would you guess would be in the dolphin group? One way to approach this question is to 
understand what would happen if the dolphins had no effect on the depression levels. 

Let’s suppose that after either swimming with dolphins or not swimming with dol-
phins, there was no difference in the number of people that showed improvement 
between those swimming with dolphins and those not. If this were true, then in the 
long run, this would indicate that if the experiment were repeated over and over again, 
we would expect the average difference in the number of people that showed improve-
ment between those swimming with dolphins and those not to be close to zero, evi-
dence that there was no difference between the two groups. Another way to think 
about the difference being zero is that each group, those swimming with dolphins and 
those not swimming with dolphins, would have about the same amount of people who 
showed improvement. No difference would indicate that out of the 13 total improvers, 
we would expect there to be about six to seven improvers, or about half the 13 total 
improvers, in each of the two groups, as pictured in the following image. We would 
expect this to be about half of 13 because the groups are the same size. If the groups 
were different sizes, it would not be half. This idea will be discussed further when 
designing a simulation for this problem. 

However, in the actual study, 10 of the 13 improved patients were from the dolphin 
group. So, the difference in the number showing improvement between the two 
groups is seven (10-3). Can this difference be explained by chance variation alone? If 
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there had been no difference between the two groups, would this be a reasonable result? In 
other words, could these 10 patients have shown improvement in the short run when, 
in the long run, if there was no difference in depression levels, we would expect to 
see about six or seven people improve in each group? How likely is it that 10 of the 
13 improvers randomly fall into the dolphin group if we assume that swimming with 
dolphins is the same as not swimming with dolphins for depression? Essentially, we are 
asking whether it is possible for the observed difference of seven is a reasonable out-
come from the random assignment of participants to the two groups if swimming with 
dolphins has no effect on treating depression.  

To gain some intuition about these likelihoods and the long-term patterns of the dif-
ference, we can design a simulation for the experiment, perform the simulation a large 
number of times, record the differences resulting from each trial, and determine which 
difference are likely and which are not likely. We then can use the information from 
the simulation to determine if the observed difference in the study (10 improvers in 
the dolphin group and 3 improvers in the nondolphin group) is very unlikely. If the 
observed difference is unlikely, then we can conclude that swimming with dolphins can 
in fact be attributed to improving the depression levels of patients.

One way to simulate this experiment is described below: 

Each of the 13 improvers will be randomly assigned to one of the two groups by flipping 
a coin and seeing whether they are in the dolphin group or not. If the coin lands heads, 
then the improver is in the dolphin group. If it lands tails, then the improver is in the 
nondolphin group. Note that we expect that in the long run six or seven (6.5) should be 
assigned to the dolphin group. After assigning the improvers to either group, we can then 
tally up the total number of improvers in each group. We would repeat this 1000 times 
to find what is expected to happen in the long run. We could do this by hand and flip a 
coin, but doing this amount of coin flips would be too time-consuming and tedious, so 
we employ the use of software instead to carry out our simulation. It is important to note 
that this simulation using a coin works because the two groups, dolphin and not dolphin, 
are the same size (15 people in each group). If instead there were unequal amounts of 
people in each group, then we could no longer use a coin to simulate; instead, we would 
need to simulate using manipulatives such as cards. Simulating with cards would entail 
designating red cards to represent those that remained depressed and black cards to those 
that improved. Then instead of flipping a coin, we would be shuffling and redealing. 

The following histogram illustrates how many of the 13 improvers land in the dolphin 
group when they are randomly assigned. We can see that if we flip a fair coin (which 
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gives an equal probability of an improver being in the dolphin group or nondolphin 
group), then we can see by the histogram of the counts that the number of improvers 
we would expect to see in the dolphin group would be around six or seven. This is 
demonstrated through the histogram because the six and seven bars have the highest 
frequency and the balance point of the histogram is around the mean of 6.5, as indi-
cated by the fulcrum in the histogram. Looking at the histogram, what was the fre-
quency of getting 10 improvers or more in the dolphin group? 

We can see that in 1000 repetitions of this simulation, approximately 35 times (or 
0.035 percent of the time), there were 10 improvers or more in the dolphin group, as 
the researchers found. 

This indicates that the result of getting 10 improvers randomly in the dolphin group 
is quite unusual. In other words, this is strong evidence that getting 10 improvers in 
the dolphin group would not happen by chance, indicating that participants in the 
dolphin group actually improved. In fact, there is strong conclusive evidence that 
the participants’ depression decreased because the dolphins did have an effect. These 
ideas are formally discussed in randomization tests, p-values, and hypothesis tests 
found in the AP statistics curriculum. 

A description of how to carry out this example by hand using a deck of cards is shown 
by Strayer and Matuszewski (2016). The full article can be found at www.nctm. 
org/Publications/Mathematics-Teacher/2016/Vol109/Issue8Statistical 
-Literacy_-Simulations-with-Dolphins/.

http://www.nctm.org/Publications/Mathematics-Teacher/2016/Vol109/Issue8/Statistical-Literacy_-Simulations-with-Dolphins/
http://www.nctm.org/Publications/Mathematics-Teacher/2016/Vol109/Issue8/Statistical-Literacy_-Simulations-with-Dolphins/
http://www.nctm.org/Publications/Mathematics-Teacher/2016/Vol109/Issue8/Statistical-Literacy_-Simulations-with-Dolphins/
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This example illustrates another connection of how probability is used in statistics. 
Knowing the long-run probabilistic behavior of the number of improvers being in the 
dolphin group allows us to ascertain that the study result is in fact not due to chance. 
However, we must be reminded that, in practice, we carry out an experiment only 
one time. We do not repeat an experiment over and over again and assign partici-
pants to treatments multiple times. The purpose of both this simulation and consider-
ing long-run probabilistic behavior is to apply the same statistical understanding to a 
single experiment and to use the results from that experiment to determine whether 
an observed difference between two treatment groups can or cannot happen just by 
chance. If it is unusual for the results to happen by chance, then we have a rationale for 
establishing a causal relationship,e.g. that swimming with dolphins caused improve-
ment in depression levels. 

INVESTIGATION SUMMARY: 
The main concepts developed in the swimming with dolphins investiga-

tion are: 

1. If we know the long-run behavior of how the difference between two groups 
behave, then we can judge if the difference happened by chance or if the treat-
ment caused the difference.

2. The notion of probability as a long-run relative frequency can be applied to the 
context of cause and effect. 

3.  Random assignment is used to balance out the effects of potential confounding 
variables. 
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UNIT 3C:
Sampling Distributions and 
Bootstrapping

The prior unit focused on how probability is connected to statistics. In this unit, we will 
make this connection even more explicit. Oftentimes in statistics we are presented with 
situations where we do not have access to the entire population; however, we want to 
know something about certain characteristics of the population as defined by either quan-
titative or categorical variables. We summarize these variables with parameters such as 
the population mean or population proportion. We likely have access only to a sample of 
the population, and we need to use only that sample to draw conclusions about the entire 
population. While an important goal in statistics is to make claims and provide informa-
tion about the population, to do so, we must somehow be able to connect the information 
we gather from the sample to the population. 

There are two main approaches to this inference problem that are important to con-
sider. The first relies on classical methods of building confidence intervals using the 
normal distribution, and the second relies on modern and technologically heavy boot-
strap methods. In this unit, we will discuss both methods, in order to give a full picture 
of the ways modern statistics approaches inference. We will begin with building the 
foundation for inferential methods using the normal distribution and deriving the cen-
tral limit theorem, and conclude with building the foundation for inferential methods 
using the bootstrap method. 

For both the traditional approach and the bootstrap approach, there are two import-
ant steps to connect the sample to the population: (1) selecting or having access to 
a random sample of the population, and (2) using the information from the random 
sample to draw inferences about the population. In past investigations, we have repeat-
edly selected multiple random samples from a population in order to develop theory 
and understanding, but in practice we select only one sample to draw inferences. This 
process is depicted as follows:
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More specifically, we are interested in knowing information about a population param-

eter. A parameter is a characteristic about the population that can be quantified in some 
way, such as the population mean for a quantitative variable or the population proportion 
in a particular category for a categorical variable. We use the matching sample statistic 
(e.g., sample mean or sample proportion) to help us draw inferences about the population 
parameter of interest. Therefore, a parameter is at the population level, and a statistic is at 
the sample level.  

Sampling variability describes the sample-to-sample variation of a sample statistic. 
Suppose, for example, one took a sample from a population and computed the mean of 
that sample. It is important to understand that if a different sample had been selected, then 
the calculated mean for that sample would more than likely not be the same. For example, 
in the prior units, using simulations we constructed a dotplot to represent the simulated 
distribution of the sample. This dotplot, pictured again below, shows that the sample mean 
word length varies from sample to sample (each dot represents a sample mean). This vari-
ation in the values of the means is called the sampling variability of the sample mean. 

Note that when random samples of the same size are repeatedly selected from a population, 
sample statistics such as the sample mean or the sample proportion vary from one sample 
to another. This sample-to-sample variability is called the sampling variability of the sta-
tistic. The sampling distribution of a statistic describes this sample-to-sample variability.
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While the values of a sample mean are not necessarily the same from sample to sample, 
certain values may be more likely to occur than others. In fact, the distribution for some 
sample statistics follows a specific pattern, which we will discover. A distribution of a 
sample statistic is called a sampling distribution. 

Up to this point, we have covered two different types of distributions: population dis-
tributions and sample (or data) distributions. In this unit, we are focusing on sampling 

distributions. A sampling distribution is constructed by taking all possible samples of the 
same size from a population and then computing and recording the value of the sample 
statistic for every possible sample. To construct the entire sampling distribution, values 
of the sample statistics need to be computed for all possible samples. If all samples are not 
represented, then we call the created distribution an approximate sampling distri-

bution. We can obtain an approximate sampling distribution through simulations. The 
dotplot from the Gettysburg Address sample means provides an example of an approx-
imate sampling distribution. Even though the approximate sampling distribution does 
not include the sample means from all possible samples, it still provides information 
about which values of the statistics are surprising and which values are common. An 
approximate sampling distribution thus provides a structure for us to observe common 
sample statistics and surprising sample statistics.
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In general, a sampling distribution provides information on the possible values of a 
statistic and how often those values can occur. Knowing the sampling distribution 
thus enables us to draw inferences about a population based on data in a single sample. 
If we had access to only one sample statistic but knew information about how surpris-
ing or common our statistic might be, then we could estimate what the value of the 
population parameter might be.  

Sampling distributions enable us to make connections between a sample and a popu-
lation. The connection relies on knowing important features of the sampling distri-
bution. Can we predict the shape of the sampling distribution for a statistic? Can we 
predict the center and the variability of the sampling distribution? 

This connection is difficult to grasp, but the investigations in this unit will walk 
through this process step-by-step. The goal of this unit is to learn about sampling 
variability, examine the sampling distributions of commonly computed sample sta-
tistics, and understand how to use sampling distributions to help us make inferences 
about a population. For clarity, throughout the unit we will focus on the sample mean 
and its sampling distribution.

We begin by providing some background information on the theoretical normal distri-
bution, which will be important in this unit. The normal distribution is a symmetric, sin-
gle-mounded, bell-shaped distribution that has specific properties and is often found in 
nature and used in statistics. The Normal distribution is completely specified by its mean 
and its standard deviation. A graphical display of the distribution follows:
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In a normal distribution, the area under the curve represents probability. For example, 
the probability of a value falling between a and b is represented by the shaded area as 
shown below:7. 

The mean of the normal distribution is denoted as μ and represents the center of the bell. 
The standard deviation is denoted as σ, sigma, and represents the average distance from 
the mean. A bell-shaped, symmetric distribution has some specific properties that relate 
the mean, the standard deviation, and probability. These properties are often referred to as 
the empirical rule. Namely: 

Graphic taken from https://commons.wikimedia.org/wiki/File:Empirical_Rule.PNG. Original created by Dan Kernler, 
CC BY-SA-4.0, via Wikimedia Commons under the Creative Commons license.

7 Note that the area under the curve between a and b is the same as the area under the curve between a and b in-
cluding a and b. This is because the area under a curve at one point is zero. In other words, P(a<x<b) = P(a≤x≤b).
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 • ~68% of the distribution falls within 1 standard deviation of the mean,
 •  ~95% of the distribution falls within 2 standard deviations of the mean, and
 • ~99% of the distribution falls within 3 standard deviations of the mean.

Written mathematically, these statements are:
 • there is a 68% chance the value falls within the interval (μ − σ, μ + σ ),
 •  there is a 95% chance the value falls within the interval (μ − 2σ, μ + 2σ ), and
 • there is a 99% chance the value falls within the interval (μ − 3σ, μ + 3σ ).

If the bell-shaped, symmetric distribution is normal, these properties are even more spe-
cific. They are: 

 • 68% of the distribution falls within 1 standard deviation of the mean,
 • 95% of the distribution falls within 1.96 standard deviations of the mean, and
 • 99% of the distribution falls within 2.576 standard deviations of the mean.

Using the information of the normal distribution provided, we now embark on our first 
investigation.

Investigation 3C.1: Sampling of Words, Part 2

Goal of this investigation: Introduce sample-to-sample variation of a statistic and  

construct an approximate sampling distribution for a statistic through simulation.

In this investigation, we will construct an approximate sampling distribution by taking 
multiple random samples from a population and use it to determine which values of a 
statistic are common and which ones are uncommon. Consider the following investi-
gative question: 

What are common and uncommon values of the mean length of  

words in samples of size 10 from the Gettysburg Address?

In the Gettysburg Address investigation, we simulated the process of taking samples 
of size 10 and computing the average word length of the 10 words selected from 1000 
samples. Then we plotted the following dotplot, where each dot represents the average 
word length of the words in one sample of size 10 from the 1000 random samples. 
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Approximate sampling distribution for mean word length of samples of size 10

From the dotplot, we can see that many samples had an average word length between 
3.5 to 5.5 letters. Less common values were around the average of three letters or less 
and six letters or more. The dotplot also shows us that out of the 1000 random samples 
of size 10, none of them had an average word length of seven or above, as well as two or 
below. These observations from the approximate sampling distribution provide us with a 
general picture of the behavior of the sample mean, which, in this case, is the statistic that 
connects to our investigative question. Although the approximate sampling distribution 
as visualized in the dotplot does not represent the entire sampling distribution, it does 
show us information about which values of the sample mean (our sample statistic) are 
surprising and which values are common.

It is important to recognize that sampling distributions show both the possible values of a 
statistic and how often these values could occur if random samples are repeatedly selected 
for the population. In addition, one should recognize that values of statistics that occur 
often are common or plausible and those that are far from the values that occur often are 
considered surprising or uncommon.

As stated, the Gettysburg Address dotplot depicts an approximate sampling distribution. 
Up to this point in the book, we have discussed three different types of distributions: 

1. population distributions,
2. sample (or data) distributions, and 
3. sampling distributions. 
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To ensure we are clear on the differences and connections among these three distribu-
tions, we answer the following investigative question: 

What are the connections among the population distribution,  

sample (or data) distribution, and sampling distribution?

In the introduction to this unit, we distinguished between a population distribution, a 
sample distribution, and a sampling distribution. Let’s make sure we understand the dis-
tinction between these three distributions in the context of this problem.

In the GettysburgAddressWordwLengths.csv file, we have the words of the Gettysburg 
Address. The population is the entire list of words in the address. The following dotplot 
illustrates the population distribution for this data set:

Population distribution of word length 

The mean word length and the standard deviation of the word length of this population 
are 4.29 and 2.12, respectively. Note that a value for word-length in the population must 
be a whole number, while the population mean and the standard deviations do not (in 
this case 4.29 and 2.12 are both decimal values). 

Next, let’s create a possible sample distribution by taking one random sample of size 10 
and plotting the length of each word from the sample. The words that are randomly 
selected by software are and, men, birth, dead, they, shall, nation, we, a, and brave.

This sample distribution can be visualized in the following dotplot: 
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Sample distribution for word length of a sample of size 10

For this sample, the sample mean is 3.8 and the standard deviation is 1.55. We would expect 
that if another sample were selected, then the sample distribution, the sample mean and 
sample standard deviation may be different. However, while the sample distribution may 
change depending on the sample selected, the population distribution always remains the 
same. This is because it is the distribution for the entire population and thus does not vary.

As described in the initial part of this investigation, the following dotplot depicts an 
approximate sampling distribution: 

Approximate sampling distribution for mean word length of samples of size 10

The values in this dotplot are the sample means found from taking 1000 repeated 
samples from the population of words. The mean of this sampling distribution is 4.28 
and the standard deviation is 0.65. 
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The three dotplots represent the three types of distributions (population distribution, 
sample distribution, and sampling distribution). The next investigation will further 
illustrate the relationship between the population distribution, the sample distribution, 
and the sampling distribution.

Frequent difficulties in understanding sampling distributions lie in differentiating 
among the population distribution, a sample distribution, and the sampling distri-
bution of a statistic. The population and sample distributions describe the possible 
values of a variable and how often each value occurs within a population or sample, 
respectively. The sampling distribution, introduced in this unit, describes the sam-
ple-to-sample variation in possible values of a statistic from multiple samples of the 
same size sampled from the same population. It is essential that one is comfortable 
with these three different types of distributions in order to proceed to inference.

INVESTIGATION SUMMARY
The main concepts developed in the sampling of words, part 2 investigation 

are: 

1. There are three different important distributions: population distribution, 
sample distribution, and the sampling distribution. 

2. The sampling distribution is a distribution that describes how a statistic varies 
for repeated samples from the same population. 

3. The sampling distribution may show which values of the statistics are common 
or plausible and which are surprising or unusual.

In the next investigation, we examine the relationship between the shape of the popu-
lation distribution and the shape of the sampling distribution, as well as the effect of the 
sample size on the sampling distribution.

Investigation 3C.2: Different Pedagogies 

Goals of this investigation: Informally discover the shape of the sampling distribution  

and examine the effect of the sample size on the shape of the sampling distribution.

In this investigation, we are going to examine the predictability of the shape of the sam-
pling distribution for a sample mean. To do this, we must first investigate its shape. Our 
investigative question is: 
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Can the sampling distribution for the sample mean be modeled by the normal  

curve regardless of the shape of the population distribution?

A school has been experimenting with different pedagogies for teaching mathematics. 
The different strategies are teaching traditionally, teaching technology-based, teaching 
self-paced, and teaching project-based. There were a total of 4316 students, with 1079 
students exposed to each pedagogy throughout the year. At the end of the year, all of the 
students took a mathematics test. Pedagogy_Methods.csv contains the test results. Using 
these data, let’s investigate the relationship between the shape of the population distribu-
tion and the shape of the sampling distribution. 

We begin by visualizing the population distributions of student test scores for the stu-
dents in each of the four pedagogies. These population distributions describe the test 
scores for all 1079 students after being taught by the four teaching strategies.

Population distributions of test scores for each of the four pedagogies

To characterize the dotplot representations of the population distributions by dis-
tribution shape, we describe the traditional pedagogy math test scores distribution 
as symmetric and single-mound shaped, the technology pedagogy math test scores 
as somewhat uniform, the self-paced as skewed to the right, and the project-based as 
bimodal, which indicates that the distribution has two modal clusters, as indicated by 



210 | Statistics and Data Science For Teachers

the two peaks. The population means and the population standard deviations for each 
of these distributions are given in the following table: 

Pedagogy Mean Standard Deviation

Traditional 59.83 4.17

Technology 58.18 24.01

Self-Paced 61.65 1.77

Project-Based 59.63 20.62

For each of these populations, we are going to simulate taking 1000 random samples, 
compute the means for each sample, then use these sample means to create a dotplot rep-
resentation of the sampling distribution, which will then allow us to visualize the approx-
imate sampling distribution of the sample mean. We are going to repeat this process for 
different fixed sample sizes. First, we will do this for samples of size 10. Next we will use 
samples of size 30, and lastly we will use samples of size 50. For each population and each 
sample size, we will end up with a dotplot representation of the approximate sampling 
distribution for the sample mean. Thus, we will have a total of 12 approximate sampling 
distributions for the sample means.

The purpose of this exercise is to answer the following two questions: 
1. How does the shape of the population distribution affect the sampling distribution?
2. How does the sample size affect the sampling distribution? 

As we construct these approximate sampling distributions, we will fill in the following 
table to keep track of the characteristics of the sampling distributions.

Population Size of 
Sample

Shape of the 
Approximate 

Sampling Distribution 

Mean of the Approximate 
Sampling Distribution (mean 

of the sample means)

Standard Deviation of the 
Approximate Sampling 
Distribution (standard 

deviation of the sample means)

Traditional n = 10
n = 30
n = 50

Technology n = 10
n = 30
n = 50

Self-Paced n = 10
n = 30
n = 50

Project-Based n = 10
n = 30
n = 50
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For the traditional teaching method, here are the three simulated approximate sam-
pling distributions: 

Approximate sampling distributions for the sample mean  
with samples of size 10, 30, and 50 for traditional pedagogy

Now that we have our three approximate sampling distributions, we can report on 
the shape, variability, and center of the distribution. We see that as the sample size 
increases, the shape of the sampling distribution tends to have less variability and is 
single-mounded and symmetric. The center of the sampling distributions stays about 
the same for all sample sizes. The descriptive statistics to fill into the table for the tradi-
tional teaching method are: 

n Mean of the Sampling Distribution Standard Deviation of the Sampling Distribution

n = 10 1000 59.82 1.32

n = 30 1000 59.81 0.77

n = 50 1000 59.83 0.60
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We now repeat the same process with the next teaching pedagogy. For the technology- 
based teaching method, here are the three simulated approximate sampling distributions: 

Approximate sampling distributions for the sample mean  
with samples of size 10, 30, and 50 for technology pedagogy

Again, we see that as the sample size increases, the shape of the distribution indicates less 
variability and is single-mounded and symmetric. The descriptive statistics to fill into the 
table for the technology teaching pedagogy are:

n Mean of the Sampling Distribution Standard Deviation of the Sampling Distribution

n = 10 1000 58.35 7.83

n = 30 1000 58.13 4.42

n = 50 1000 58.20 3.47

This table also shows that the means are similar regardless of sample size, and that the 
standard deviation of the sampling distribution decreases as the sample size increases. 
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For the self-paced method, here are the three simulated approximate sampling 
distributions:

Approximate sampling distributions for the sample mean with  
samples of size 10, 30, and 50 for self-paced pedagogy

The self-paced approximate sampling distributions seem to all have a tail. The tail 
decreases as the sample size increases and the approximate sampling distribution appears 
to become more symmetric. The descriptive statistics to fill into the table for the self-
paced teaching method are: 

n Mean of the Sampling Distribution Standard Deviation of the Sampling Distribution

n = 10 1000 61.64 0.57

n = 30 1000 61.64 0.30

n = 50 1000 61.66 0.27

We see that the center stays pretty much the same in the approximate sampling dis-
tributions for all of the sample sizes. Again, the variability decreases as the sample size 
increases, and the shape has less of a tail and becomes more symmetric about its single 
mound. For the project-based teaching method, here are the three simulated approximate 
sampling distributions:
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Approximate sampling distributions for the sample mean with  
samples of size 10, 30, and 50 for project-based pedagogy

The shape of all these distributions are approximately symmetric and single-mounded. 
The descriptive statistics to fill into the table for project-based teaching pedagogy are: 

n Mean of the Sampling Distribution Standard Deviation of the Sampling Distribution

n = 10 1000 59.40 6.45

n = 30 1000 59.64 3.86

n = 50 1000 59.66 2.83

We encourage teachers and students to work in groups of four, in which each person in 
the group chooses a pedagogy, then carries out the steps outlined previously. For each 
pedagogy, we want three approximate sampling distributions constructed (one for sample 
sizes of n = 10, 30, and 50) and the descriptive statistics computed. If working in groups, 
then each group member will have this information for their chosen pedagogy, and the 
investigation can continue by comparing the results that each group member found.

At this point in the investigation, we have the following four dotplots for each pedagogy:
 • An approximation of the sampling distribution of sample mean x for n = 10
 • An approximation of the sampling distribution of sample mean x for n = 30 
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 • An approximation of the sampling distribution of sample mean x for n = 50 
 • The entire population distribution of 1,079 test scores for the pedagogy

Let’s examine the results and answer the following questions: 
 • Do the sampling distributions look similar or different across the different 

pedagogies? 
 • Can the shape of a sampling distribution be predicted? 
 • What happens to the shape of the sampling distributions as the sample size gets 

larger? 
 • Does a larger sample size affect the mean of the sampling distribution? 

The filled in table of results for our simulated approximate sampling distributions is: 

Population Size of 
Sample

Shape of the 
Approximate Sampling 

Distribution 

Mean of Approximate 
Sampling Distribution 
(mean of the means)

Standard Deviation of Approximate 
Sampling Distribution (standard 
deviation of the sample means)

Traditional 

n = 10 bell-shaped 59.82 1.32

n = 30 bell-shaped 59.81 0.77

n = 50 bell-shaped 59.83 0.60

Technology

  n = 10 bell-shaped 58.35 7.83

  n = 30 bell-shaped 58.13 4.42

  n = 50 bell-shaped 58.20 3.47

Self-Paced 

  n = 10 skewed right 61.64 0.57

  n = 30
almost symmetric 
and bell-shaped

61.64 0.30

  n = 50
almost symmetric 
and bell-shaped

61.66 0.27

Project-Based

  n = 10 bell-shaped 59.40 6.45

  n = 30 bell-shaped 59.64 3.86

  n = 50 bell-shaped 59.66 2.83

From the table we can see that the shape of the original population distribution has mini-
mal impact on the shape of the sampling distribution. In the case of the skewed self-paced 
approximate sampling distributions, we see a right tail, but that tail diminishes as the 
sample size increases. The sampling distributions appear to approach a symmetric, single- 
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mounded distribution (approximate normal distribution) as the sample size increases. 
This enables us to conclude that the shape of the sampling distribution of the sample 
mean can, in fact, be predicted. We expect the shape to be modeled by a normal dis-
tribution, provided that the sample size is large enough. Additionally, in all cases, the 
mean of the sampling distribution is approximately equal to the mean of the popula-
tion (seen in column four of the table). We also note that the standard deviation of the 
sampling distribution, referred to as the standard error, decreases as the sample size 
increases for all of the four instructional pedagogies. 

Sampling distributions simulated in this investigation are approximate. The theoretical 
sampling distribution would consider all possible samples from a population of a certain 
size. This investigation shows that it is important to understand that regardless of the shape 
of the population distribution, as the sample size increases, the shape of the sampling dis-
tribution for the mean is bell-shaped. The variability of the sampling distribution is also 
dependent on the sample size (the larger the sample size, the smaller the standard deviation 
decreases), and the mean of the sampling distribution is not dependent on the sample size. 
Instead, the mean of the sampling distribution, for any size sample, is expected to be equal 
to the population mean. The next investigation further develops these main concepts and 
unites them into an important theorem in statistics called the central limit theorem.

INVESTIGATION SUMMARY
The main concepts developed in the different pedagogies investigation are: 

1. The mean of the sampling distribution of the sample mean does not depend on 
the sample size. In theory, it is always equal to the mean of the population. 

2. The variability of the sampling distribution of the sample mean decreases as the 
sample size increases. 

3. The shape of the sampling distribution of the sample mean approaches a bell-
shaped symmetry as the sample size increases, regardless of the shape of the 
population distribution. 

Up to now, we have seen how to construct sampling distributions, as well as how the 
population distribution does not matter in predicting the sampling distribution for the 
mean with large enough sample size, and we have begun making connections between 
sampling distributions and inference. In this activity, we will be formalizing the fea-
tures of the sampling distribution of the mean with the central limit theorem.
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Investigation 3C.3: The Central Limit Theorem8

Goals of this investigation: Derive the central limit theorem.

According to  the www.pennies.org article on “A Brief History of the U.S. Cent,” the first 
one-cent coin was created in 1787 and was made of pure copper. From 1787 to 2000, approx-
imately 300 billion one-cent coins were created. In the name of statistics, students at a high 
school were instructed to bring in any pennies they had lying around as change in their house. 
A total of 499 pennies were collected from students. For every penny that was brought in, the 
year and age of the penny was recorded. The age of the penny was computed by subtracting 
the year the penny was made from 2014. The data were collected in Pennies.csv.

For the purpose of this investigation, you are going to suppose that the 499 pennies 
make up the entire population of pennies that are currently in circulation. During the 
investigation, we will observe how the shape, mean, and standard deviation of the sam-
pling distribution of the mean age of the pennies differ from those of the distribution 
for the population of the pennies, and how the shape and standard deviation depend on 
the sample size. This activity will lead us to discover the central limit theorem.

Let’s begin by visualizing the population distribution of penny ages. The population dis-
tribution for the penny ages is: 

8 This pennies activity was adapted from Scheaffer, R., Gnanadesikan, M., Watkins, A., and J. Witmer. 1996. 
Activity-Based Statistics. New York: Springer. 
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The distribution is right skewed, which makes sense because it would be more common 
to have newer pennies in circulation rather than older pennies. The population mean and 
population standard deviation are: 

Population Size Mean Standard Deviation

Penny Age 499 15.72 13.8

To compare the approximate sampling distribution for the sample mean and the popu-
lation distribution, we will construct approximate sampling distributions for the sample 
mean age of the pennies for samples sizes of 10, 25, and 50. To do this, simulate 1000 
random samples for each sample size. These distributions were created using the methods 
described in this investigation and collected in Pennies.csv. 

Approximate sampling distributions for the sample mean age  
of pennies for samples of size 10, 25, and 50 from the population
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The mean and standard deviation for each of these approximate sampling distributions are:

n Mean of the Sampling Distribution Standard Deviation of the Sampling Distribution

n = 10 1000 15.60 4.26

n = 30 1000 15.81 2.52

n = 50 1000 15.71 2.00

As we saw in the previous investigation, the mean of the sampling distribution stays 
about the same for each sample size, the variability (standard deviation of the sampling 
distribution) decreases as the sample size increases, and as the sample size increases, the 
shape of the distribution is approximately bell-shaped. Let’s try to be even more precise 
about these statements. 

The mean of the sampling distribution is equal to the population mean regardless of the 

sample size.

This finding may not be extremely obvious in these investigations because we are con-
structing approximate distributions. If we took all possible samples of the same size and 
constructed the entire sampling distribution (not just an approximate one), we would see 
this result exactly. However, even when working with approximate sampling distribu-
tions, we see that the means are consistently close to 15.6–15.7.

Our next result is the following: 

There is less variability in the sampling distribution as the sample size gets larger. The standard 

deviation of the sampling distribution gets smaller and smaller as the sample size increases. 

The standard deviation of a sampling distribution is called the standard error of the 
sample mean (or of the statistic). We see that the standard error decreases as the sample 
size increases directly from the previous table, but we can be more precise and try to 
find a formula that models how it decreases. To find a formula for the standard error, 
let’s begin by making a graph with the sample size plotted on the horizontal axis and 
the standard deviations of the sampling distributions for the different size samples plot-
ted on the vertical axis. In looking at the plot, what types of functions could possibly 
model the relationship (e.g., linear, quadratic, power, exponential, etc.)? 
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Recall that in prior units, we explored linear relationships by visualizing a piece of spa-
ghetti or straight edge to find a linear equation. The relationship does not appear to be 
linear because no matter how you try to line a piece of spaghetti between the three points, 
a linear function does not appear to be the best fit. However, it does seem like the rela-
tionship could be modeled using a curve of some type. Using an online curve fitter, such 
as www.mycurvefit.com/, we can try different types of curves to fit the points. In this 
case, a power function provides the best fit to the graph.
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On the bottom corner of the output, we see the equation is: y = 12.65 x 
-0.473 

Because the exponent −0.473 is approximately −1/2, we can move the x into the denom-
inator and rewrite the function as: y = 

 

12.65

√ x

But x is the sample size. Therefore, this function is the following:  y = 

 

12.65

√ sample size

             

Notice that the 12.65 is very close to the standard deviation of the population. If we had 
the entire sampling distribution, the numerator of the standard error would be exactly 
equal to the standard deviation of the population. So not only do we know that the 
standard error decreases as the sample size increase, but we precisely know: 

standard error = 

standard deviation of the population

√ sample size

Lastly, we can visualize the following: 

As the sample size increases, the shape of the sampling distribution is bell-shaped.

Now we can put all of these statements together and formally state the central limit 
theorem. 

The Central Limit Theorem (CLT) for the Sample Mean: 
The sampling distribution of the sample mean is centered at μ; the mean of the 
population has a standard error SE = 

 

σ
√ n

, and approaches the normal distribution 
as the sample size increases.

In other words, even with having access to only one sample, we can use the sampling dis-
tribution to help us state whether certain values of a statistic are surprising or plausible. 
This is because the CLT gives us guidance on the distribution of the sample statistic. For 
prior investigations, we had to simulate sampling distributions for sample means, but now, 
because of the CLT, we can predict how the sample mean behaves. In turn, the CLT allows 
us to make conclusions about the population, which was our ultimate goal as described in 
the inference loop depicted in the inference process diagram at the beginning of this unit. 

It is important to be able to describe the CLT in your own words and recognize the value 
of the CLT for inference. 
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INVESTIGATION SUMMARY
The main concept developed in the central limit theorem investigation is: 

The central limit theorem states  that as n, the size of the sample, increases, the 
standard deviation of the sampling distribution of the sample mean decreases 
according to the formula σ

√ n

, while the mean of the theoretical sampling distri-
bution is always equal to the mean of the population. As the size of the sample 
increases, the shape of the sampling distribution of the sample mean can be 
approximated by a bell-shaped, symmetric curve.

Knowing the behavior of a sampling distribution for a statistic allows us to connect 
sample information to the population through inference. The result of the central limit 
theorem is extremely powerful in statistics because it is the crux of inference. It should be 
noted that the concept of a sampling distribution is challenging for people to understand. 
Using simulations can help develop this knowledge, but simulations can also lead people 
astray, because a person may think they need to always have multiple samples in order to 
perform inference. Being aware of this potential pitfall can help teachers phrase the ideas 
of this unit carefully in order to not lead students astray. 

Because of the importance of the central limit theorem and this unit, a summary of the 
key ideas presented in the unit are included here. They are: 

1. The sampling distribution is a distribution that describes how a statistic varies for 
repeated samples of the same size sampled from the same population.

2. The sampling distribution shows which values of a statistic are common and 
which are surprising.

3. The mean of the sampling distribution of the sample mean does not depend on 
the sample size. The mean of the theoretical sampling distribution of the sample 
mean equals the mean of the population.

4. The variability of the sampling distribution of the sample mean decreases as the 
sample size increases according to the formula σ/ n , where n is the sample size.

5. The shape of the sampling distribution of the sample mean looks more and more 
normal as the sample size increases.

While these investigations focused on the sample mean, we also obtain similar results for 
the sample proportion. For example, suppose we are interested in the population propor-
tion corresponding to the proportion of people who thought favorably about the Every 
Student Succeeds  Act (ESSA), or the proportion of students who are eating breakfast 
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in the morning before going to school, and we randomly sample people from a popula-
tion to survey them about these issues. Different samples of people will lead to different 
sample proportions of people who favor ESSA or eat breakfast in the morning. Therefore, 
the value of the sample proportion varies from sample to sample. Similar to the mean, 
the sampling distribution for the sample proportion also follows a normal distribution as 
sample sizes increase! Thus, the central limit theorem for the sample proportion can be 
stated as follows: 

The Central Limit Theorem for the Sample Proportion: 
The sampling distribution of the sample proportion is centered at p, the propor-
tion of the population, and has a standard error SE = p(1−p)

n
, which decreases as 

the sample size increases. The shape of the sampling distribution is approximately 
normal for a large enough sample size n.

Follow-Up Questions

1. Plausible/Common or Surprising/Unusual? 

Principal Brown is interested in understanding how her middle-school students 
compare with middle-school students nationally. 

One thousand middle schools across the United States were randomly selected by the 
federal government to answer a survey about student backgrounds and behaviors. The 
middle schools were sampled from medium-size suburbs in middle- to upper-middle-
class areas. The middle schools all had approximately 600 students and were considered 
midsize. Some of the questions on the survey were: 

a. Do you participate in school-sponsored after-school activities?
b. Do you have any siblings at the middle-school or high-school grade level?
c. Did you eat breakfast this morning?
d. Did you go to bed before 11 p.m. last night?
e. Do you have a computer with internet access at home?

For each of the 1000 middle schools, we can pretend that the Department of Educa-
tion printed the following graphical displays that represent the sampling distribution 
of the sample proportion of students replying “yes” for each survey question. 
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Principal Brown’s school has 600 students, which is the same size as the schools sam-
pled by the Department of Education. She decides to ask her student body the same 
survey questions to determine how her school compares with others nationally. Her 
results are displayed in School_Data.csv. Using the data set, compute the percentage 
of students that said “yes” for each question at Brown’s school.

a. Looking at the approximate sampling distribution provided by the Depart-
ment of Education, locate Brown’s summary statistic on the distribution. 
Mark it.

b. Decide whether Brown’s school’s summary statistic is common or unusual. 
Explain why and how you made this decision.

2. Are all sampling distributions normal?

The investigations in this unit derived the central limit theorem for the sample mean. 
We saw that regardless of the distribution of the population from which samples are 
drawn, the sampling distribution of the sample mean is approximately normal. We 
also noted that the sample proportion behaves similarly to the sample mean. In this 
problem, we will examine whether this pattern exists for other statistics beyond the 
mean. We will investigate the answer to the following question:

Does the sampling distribution for the sample maximum behave in a similar way to  

the sampling distribution of the mean and proportion? 
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To answer the question, use the Pennies.csv data. Simulate three sampling distri-
butions for the sample maximum (instead of computing the mean for each sample, 
you will compute the maximum for each sample). Take random samples of 10 pen-
nies, 30 pennies, and 50 pennies, each 1000 times. For each sample, compute the 
maximum. What do you observe about the mean, standard error, and shape of each 
sampling distribution? Did the sampling distribution for the maximum behave in a 
similar way to the sampling distribution of the mean? Why do you think this is?

The previous investigations developed an approximate sampling distribution of 
a sample statistic from repeated sampling of same-size samples from a population. 
However, in reality, we do not in fact have access to repeated samples from a pop-
ulation, but instead access to only one sample. Using the one sample, can we get an 
approximate sampling distribution to give us an idea of which values of the sample 
statistic might be plausible and likely or surprising and unlikely? The answer is yes. 
There is an alternative method for obtaining insights about the sampling distribu-
tion for any sample statistic called the bootstrap. Note that the sampling distributions 
for the sample mean and the sample proportions are known but others are not.

The bootstrap method essentially takes the one random sample and treats it as a pop-
ulation. From this “population,” we repeatedly sample with replacement samples of the 
same size. For each sample, we proceed in the same manner as the traditional methods 
described previously. For each sample, we compute the sample statistics and thus we 
can look at the Bootstrap approximate sampling distribution. The next investigation 
works through this idea.

Investigation 3C.4: Pennies Continued

Goals of this investigation: Introduce the bootstrap.

We aim to investigate the following question: 

What are plausible values for the average age of pennies in circulation?

A total of 499 pennies were collected from students in a high-school class. For every 
penny that was brought in, the year and age of the penny was recorded. The age of the 
penny was computed by subtracting the year the penny was made from 2014. The data 
were collected in Pennies.csv.
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For the purpose of this investigation, we are going to pretend that the 499 pennies make 
up the entire population of pennies that are currently in circulation. For this sample of 
pennies, we find that the average age of a penny is 15.7 years old. The sample distribution 
of the 499 pennies is pictured in the following dotplot: 

To get a sense of the plausible average age, we have to understand if getting a mean age of 
15.7 years is something that is common or is surprising. To do this, we can simulate more 
sample means, say 1000, and see if many come out to be near 15.7. Because we do not 
have access to the entire population of pennies in circulation, we are going to treat this 
sample of 499 pennies as our population, and we are going to sample directly from it.

The key about the bootstrap is to sample with replacement. This process of sampling is 
such that for every penny age sampled from the 499 pennies, that penny age is put back in 
the “population” before the next penny age is sampled. This way a penny could be repeat-
edly sampled. We carry out this random sampling with replacement process 1000 times: 

replicate(1000, mean(sample(pennies$age, size = 499, replace = TRUE)))

We set the sample size at 499, mimicking the repeated sample of the same size we did 
in the traditional methods, and simulate random samples with replacement. For each 
sample, we find the mean age of the pennies in the sample and store those sample means 
in a new column.
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To visualize these sample means, we can create a dotplot (just like we did in the previous 
investigations) that represents the bootstrap sampling distribution: 

Similarly to the previous investigations, we can also compute the mean and the standard 
error of these sample means: 

n Mean Standard Deviation

Mean of the sSample Means 1000 15.76 0.62

From this, we can see that our original sample statistic value of an average age of 15.7 is 
in fact very plausible. This compares well with the repeated sampling information we 
obtained in the prior investigation, in which we found that for sample size n = 50, our 
approximate sampling distribution had a mean of 15.71 and a standard deviation of 2.00. 

The bootstrap method offers another approach to finding an approximate sampling dis-
tribution in a situation where we do not have access to the entire population. It is import-
ant to note that in real-life situations, we never have access to the entire population if we 
are looking only at sample information. If we had information about the entire popula-
tion, we would merely use it and not bother with sampling. The bootstrap method thus 
allows us to investigate the behavior of any sample statistic in a real setting. This is espe-
cially important for the sampling distribution of a sample statistic that cannot be modeled 
by the normal curve, such as the maximum value in a random sample.



228 | Statistics and Data Science For Teachers

At this point, we can answer the investigative question “What are plausible values for 
the average age of pennies in circulation?” using a confidence interval. Because the 
sampling distribution created with the bootstrap looks approximately normal, then we 
apply the empirical rule. We know that approximately 95% of the sample means are 
within two standard deviations (0.62) of the mean of the sampling distribution (15.76). 

Thus, we can consider forming a 95% confidence interval that shows plausible values for 
the average age of pennies in circulation by:

15.72 ± 2(0.61) = (14.5, 16.94)

Therefore, at the 95% confidence level, we give the range of plausible values for the aver-
age age of pennies in circulation to be (14.5, 16.94). 

INVESTIGATION SUMMARY
The main concepts developed in the pennies continued investigation are: 

1. The bootstrap provides an alternative approach to understanding the sampling 
distribution of a sample statistic that is very effective in real-life scenarios when 
the population is unknown and when the behavior of the sampling distribution 
of a statistic is unknown.

2. The bootstrap treats the original sample as the population. It necessitates the 
use of technology to sample with replacement from the original sample.  

3. Using the approximate sampling distribution found through the bootstrap, one 
can estimate a range of plausible values for the population parameter of interest. 

The CLT is extremely important in inferential statistics. While in the previous investiga-
tions we derived the CLT by taking repeated samples, we in fact do not do this in real life. 
As noted in the bootstrap investigation, we have access to only one sample. The CLT is 
powerful because we know information about how the sample mean or the sample pro-
portion behaves without needing to know anything about the population. Before technol-
ogy was available to use a method such as the bootstrap, the CLT provided the backbone 
for all inference. As technology has become more powerful, the bootstrap offers an alter-
native to the theory of the CLT. Through simulations, the bootstrap method can give you 
an idea of the sampling distribution of any statistics using sampling with replacement, as 
described in the investigation. While the CLT applies only to the mean and the propor-
tion, the bootstrap approach can be used in situations where you are interested in other 
sample statistics. 
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While the bootstrap offers a nice alternative to the theoretical method of the CLT, at this 
time, the bootstrap is not as widely taught in education. When interested in the sample 
mean or sample proportion, the theory of the CLT is still applied. 
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Final Summary

The concepts and materials presented throughout this book are meant to address 
teachers’ and students’ learning of statistics and data science up until basic infer-
ence and more complex algorithms and computing. The concepts in this book are 
foundational to working with data. Further additional information and examples 
can be found in the GAISE II report, as well as in a resource guide maintained at 
www.nctm.org/gaise. Data sets used in this book can be downloaded at https://bit.
ly/Statistics-DataScience-for-Teachers. Other important resources can be found 
under the Education tab at http://www.amstat.org.
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